A. Imoize, Boluwatife Samuel Ben-Adeola, J. Adebisi
{"title":"基于环境噪声合成的多因素安全协议系统的开发","authors":"A. Imoize, Boluwatife Samuel Ben-Adeola, J. Adebisi","doi":"10.4108/eai.13-7-2018.163979","DOIUrl":null,"url":null,"abstract":"The escalating cases of security threats on the global scene, especially in the cyberspace, demands urgent need to deploy sophisticated measures to mitigate these calamitous threats. To this end, various lock mechanisms have been developed and deployed to prevent access to control systems from potential intruders. This paper provides a solution to this pervasive problem, addressing concerns on the physical and virtual components of an access control system. A locally generated One-Time-Passkeys (OTPs) was created, leveraging ambient noise as entropy input. The system was deployed on an Arduino microcontroller embedded in a safe-cabinet secured with a 12V solenoid lock. The design was implemented and tested against standard metrics. Results achieved include algorithmic optimizations of existing local OTP protocol implementations, and the realization of a safe lock module, which interfaces with a mobile application developed on Android over a secured Bluetooth connection.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"131 4-5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a Multifactor-Security-Protocol System Using Ambient Noise Synthesis\",\"authors\":\"A. Imoize, Boluwatife Samuel Ben-Adeola, J. Adebisi\",\"doi\":\"10.4108/eai.13-7-2018.163979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating cases of security threats on the global scene, especially in the cyberspace, demands urgent need to deploy sophisticated measures to mitigate these calamitous threats. To this end, various lock mechanisms have been developed and deployed to prevent access to control systems from potential intruders. This paper provides a solution to this pervasive problem, addressing concerns on the physical and virtual components of an access control system. A locally generated One-Time-Passkeys (OTPs) was created, leveraging ambient noise as entropy input. The system was deployed on an Arduino microcontroller embedded in a safe-cabinet secured with a 12V solenoid lock. The design was implemented and tested against standard metrics. Results achieved include algorithmic optimizations of existing local OTP protocol implementations, and the realization of a safe lock module, which interfaces with a mobile application developed on Android over a secured Bluetooth connection.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"131 4-5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.13-7-2018.163979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.163979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Multifactor-Security-Protocol System Using Ambient Noise Synthesis
The escalating cases of security threats on the global scene, especially in the cyberspace, demands urgent need to deploy sophisticated measures to mitigate these calamitous threats. To this end, various lock mechanisms have been developed and deployed to prevent access to control systems from potential intruders. This paper provides a solution to this pervasive problem, addressing concerns on the physical and virtual components of an access control system. A locally generated One-Time-Passkeys (OTPs) was created, leveraging ambient noise as entropy input. The system was deployed on an Arduino microcontroller embedded in a safe-cabinet secured with a 12V solenoid lock. The design was implemented and tested against standard metrics. Results achieved include algorithmic optimizations of existing local OTP protocol implementations, and the realization of a safe lock module, which interfaces with a mobile application developed on Android over a secured Bluetooth connection.