低延迟移动VR图形管道集成机器学习架构

Haomiao Jiang, Rohit Rao Padebettu, Kazuki Sakamoto, Behnam Bastani
{"title":"低延迟移动VR图形管道集成机器学习架构","authors":"Haomiao Jiang, Rohit Rao Padebettu, Kazuki Sakamoto, Behnam Bastani","doi":"10.1145/3355088.3365154","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss frameworks to execute machine learning algorithms in the mobile VR graphics pipeline to improve performance and rendered image quality in real time. We analyze and compare the benefits and costs of various possibilities. We illustrate the strength of using machine framework in graphics pipeline with an application of efficient spatial temporal super-resolution that amplifies GPU render power to achieve better image quality.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Architecture of Integrated Machine Learning in Low Latency Mobile VR Graphics Pipeline\",\"authors\":\"Haomiao Jiang, Rohit Rao Padebettu, Kazuki Sakamoto, Behnam Bastani\",\"doi\":\"10.1145/3355088.3365154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss frameworks to execute machine learning algorithms in the mobile VR graphics pipeline to improve performance and rendered image quality in real time. We analyze and compare the benefits and costs of various possibilities. We illustrate the strength of using machine framework in graphics pipeline with an application of efficient spatial temporal super-resolution that amplifies GPU render power to achieve better image quality.\",\"PeriodicalId\":435930,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355088.3365154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们讨论了在移动VR图形管道中执行机器学习算法的框架,以提高性能和实时渲染图像质量。我们分析和比较各种可能性的收益和成本。我们通过有效的时空超分辨率应用来说明在图形管道中使用机器框架的优势,该应用可以放大GPU的渲染能力以获得更好的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture of Integrated Machine Learning in Low Latency Mobile VR Graphics Pipeline
In this paper, we discuss frameworks to execute machine learning algorithms in the mobile VR graphics pipeline to improve performance and rendered image quality in real time. We analyze and compare the benefits and costs of various possibilities. We illustrate the strength of using machine framework in graphics pipeline with an application of efficient spatial temporal super-resolution that amplifies GPU render power to achieve better image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster RPNN: Rendering Clouds with Latent Space Light Probes Flexible Ray Traversal with an Extended Programming Model Augmented Reality Guided Respiratory Liver Tumors Punctures: A Preliminary Feasibility Study Beyond the Screen Embedded Concave Micromirror Array-based See-through Light Field Near-eye Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1