集装箱码头龙门吊综合维修决策平台

J. Szpytko, Yorlandys Salgado Duarte
{"title":"集装箱码头龙门吊综合维修决策平台","authors":"J. Szpytko, Yorlandys Salgado Duarte","doi":"10.1109/MMAR.2019.8864636","DOIUrl":null,"url":null,"abstract":"The paper presents a risk-based model to coordinate the preventive-predictive maintenance process of gantry cranes in a container terminal with vessels high demand. The model coordinates the preventive-predictive maintenance process minimizing the risk of Gantry Cranes Inefficiency (GCI). The risk is estimated with a sequential Markov Chain Monte Carlo (MCMC) simulation model. In this paper, the Preventive-Predictive Maintenance Scheduling (PPMS) process of gantry cranes is non-linear stochastic optimization problem and it is efficiently solved with the algorithms Particle Swarm Optimization (PSO). The model allows the terminal container operators to obtain a maintenance schedule that minimizes the risk of GCI, as much as possible in a container terminal; as well as establishing the desired level of risk. The paper demonstrates the proposed model effectiveness with data of a real container terminal.","PeriodicalId":392498,"journal":{"name":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrated Maintenance Decision Making Platform for Gantry Cranes in Container Terminal\",\"authors\":\"J. Szpytko, Yorlandys Salgado Duarte\",\"doi\":\"10.1109/MMAR.2019.8864636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a risk-based model to coordinate the preventive-predictive maintenance process of gantry cranes in a container terminal with vessels high demand. The model coordinates the preventive-predictive maintenance process minimizing the risk of Gantry Cranes Inefficiency (GCI). The risk is estimated with a sequential Markov Chain Monte Carlo (MCMC) simulation model. In this paper, the Preventive-Predictive Maintenance Scheduling (PPMS) process of gantry cranes is non-linear stochastic optimization problem and it is efficiently solved with the algorithms Particle Swarm Optimization (PSO). The model allows the terminal container operators to obtain a maintenance schedule that minimizes the risk of GCI, as much as possible in a container terminal; as well as establishing the desired level of risk. The paper demonstrates the proposed model effectiveness with data of a real container terminal.\",\"PeriodicalId\":392498,\"journal\":{\"name\":\"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2019.8864636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2019.8864636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于风险的集装箱码头龙门吊预防性-预见性维修协调模型。该模型协调了预防-预测维修过程,最大限度地降低了龙门起重机低效率的风险。采用时序马尔可夫链蒙特卡罗(MCMC)仿真模型对风险进行了估计。本文将龙门起重机预防性-预见性维修调度(PPMS)过程作为一个非线性随机优化问题,采用粒子群优化(PSO)算法进行有效求解。该模型允许码头集装箱运营商获得维护计划,以最大限度地减少集装箱码头的GCI风险;以及建立期望的风险水平。本文用实际集装箱码头的数据验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Maintenance Decision Making Platform for Gantry Cranes in Container Terminal
The paper presents a risk-based model to coordinate the preventive-predictive maintenance process of gantry cranes in a container terminal with vessels high demand. The model coordinates the preventive-predictive maintenance process minimizing the risk of Gantry Cranes Inefficiency (GCI). The risk is estimated with a sequential Markov Chain Monte Carlo (MCMC) simulation model. In this paper, the Preventive-Predictive Maintenance Scheduling (PPMS) process of gantry cranes is non-linear stochastic optimization problem and it is efficiently solved with the algorithms Particle Swarm Optimization (PSO). The model allows the terminal container operators to obtain a maintenance schedule that minimizes the risk of GCI, as much as possible in a container terminal; as well as establishing the desired level of risk. The paper demonstrates the proposed model effectiveness with data of a real container terminal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interval Observer-Based Controller Design for Systems with State Constraints: Application to Solid Oxide Fuel Cells Stacks Process Fault Detection and Reconstruction by Principal Component Analysis Maintenance Scheduling of the Embroidery Machines Based on Fuzzy Logic Application of Artificial Intelligence in Sustainable Building Design - Optimisation Methods Social robot in diagnosis of autism among preschool children
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1