LeakMiner:通过静态污点分析检测Android上的信息泄漏

Zhemin Yang, Min Yang
{"title":"LeakMiner:通过静态污点分析检测Android上的信息泄漏","authors":"Zhemin Yang, Min Yang","doi":"10.1109/WCSE.2012.26","DOIUrl":null,"url":null,"abstract":"With the growing popularity of Android platform, Android application market becomes a major distribution center where Android users download apps. Unlike most of the PC apps, Android apps manipulates personal information such as contract and SMS messages, and leakage of such information may cause great loss to the Android users. Thus, detecting information leakage on Android is in urgent need. However, till now, there is still no complete vetting process applied to Android markets. State-of-the-art approaches for detecting Android information leakage apply dynamic analysis on user site, thus they introduce large runtime overhead to the Android apps. This paper proposes a new approach called Leak Miner, which detects leakage of sensitive information on Android with static taint analysis. Unlike dynamic approaches, Leak Miner analyzes Android apps on market site. Thus, it does not introduce runtime overhead to normal execution of target apps. Besides, Leak Miner can detect information leakage before apps are distributed to users, so malicious apps can be removed from market before users download them. Our evaluation result shows that Leak Miner can detect 145 true information leakages inside a 1750 app set.","PeriodicalId":244586,"journal":{"name":"2012 Third World Congress on Software Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"190","resultStr":"{\"title\":\"LeakMiner: Detect Information Leakage on Android with Static Taint Analysis\",\"authors\":\"Zhemin Yang, Min Yang\",\"doi\":\"10.1109/WCSE.2012.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing popularity of Android platform, Android application market becomes a major distribution center where Android users download apps. Unlike most of the PC apps, Android apps manipulates personal information such as contract and SMS messages, and leakage of such information may cause great loss to the Android users. Thus, detecting information leakage on Android is in urgent need. However, till now, there is still no complete vetting process applied to Android markets. State-of-the-art approaches for detecting Android information leakage apply dynamic analysis on user site, thus they introduce large runtime overhead to the Android apps. This paper proposes a new approach called Leak Miner, which detects leakage of sensitive information on Android with static taint analysis. Unlike dynamic approaches, Leak Miner analyzes Android apps on market site. Thus, it does not introduce runtime overhead to normal execution of target apps. Besides, Leak Miner can detect information leakage before apps are distributed to users, so malicious apps can be removed from market before users download them. Our evaluation result shows that Leak Miner can detect 145 true information leakages inside a 1750 app set.\",\"PeriodicalId\":244586,\"journal\":{\"name\":\"2012 Third World Congress on Software Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"190\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2012.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 190

摘要

随着Android平台的日益普及,Android应用市场成为Android用户下载应用的主要集散地。与大多数PC应用程序不同,Android应用程序操纵个人信息,如合同和短信,这些信息的泄露可能会给Android用户造成很大的损失。因此,检测Android上的信息泄露迫在眉睫。然而,到目前为止,Android市场仍然没有完整的审查程序。最新的Android信息泄露检测方法是对用户站点进行动态分析,这给Android应用程序带来了巨大的运行时开销。本文提出了一种名为Leak Miner的新方法,该方法通过静态污染分析来检测Android上敏感信息的泄漏。与动态方法不同,Leak Miner分析市场站点上的Android应用程序。因此,它不会给目标应用程序的正常执行带来运行时开销。此外,Leak Miner可以在应用分发给用户之前检测到信息泄露,从而在用户下载恶意应用之前将其从市场中移除。我们的评估结果表明,Leak Miner可以在1750个应用程序集中检测到145个真实的信息泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LeakMiner: Detect Information Leakage on Android with Static Taint Analysis
With the growing popularity of Android platform, Android application market becomes a major distribution center where Android users download apps. Unlike most of the PC apps, Android apps manipulates personal information such as contract and SMS messages, and leakage of such information may cause great loss to the Android users. Thus, detecting information leakage on Android is in urgent need. However, till now, there is still no complete vetting process applied to Android markets. State-of-the-art approaches for detecting Android information leakage apply dynamic analysis on user site, thus they introduce large runtime overhead to the Android apps. This paper proposes a new approach called Leak Miner, which detects leakage of sensitive information on Android with static taint analysis. Unlike dynamic approaches, Leak Miner analyzes Android apps on market site. Thus, it does not introduce runtime overhead to normal execution of target apps. Besides, Leak Miner can detect information leakage before apps are distributed to users, so malicious apps can be removed from market before users download them. Our evaluation result shows that Leak Miner can detect 145 true information leakages inside a 1750 app set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Application of Water Inflow Prediction System of Diversion Tunnel in the Secondary Hydropower Station in Jinping NOMOHiOS: Fundamental Aspects of Artificial Intelligence and Software Engineering in the Design of Management Systems Water Environment Monitoring Information System Based on ASP.NET and ArcGIS Server Cloud Manufacturing Collaboration: An Initial Exploration Coverage Criteria Guided Web Application Interactions Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1