l2范数交换代价为平方的在线凸优化的最优动态遗憾

Qingsong Liu, Yaoyu Zhang
{"title":"l2范数交换代价为平方的在线凸优化的最优动态遗憾","authors":"Qingsong Liu, Yaoyu Zhang","doi":"10.23919/ACC53348.2022.9867328","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate online convex optimization (OCO) with squared l2 norm switching cost, which has great applicability but very little work has been done on it. Specifically, we provide a new theoretical analysis in terms of dynamic regret and lower bounds for the case when loss functions are strongly-convex and smooth or only smooth. We show that by applying the advanced Online Multiple Gradient Descent (OMGD) and Online Optimistic Mirror Descent (OOMD) algorithms that are originally proposed for classic OCO, we can achieve state-of-the-art performance bounds for OCO with squared l2 norm switching cost. Furthermore, we show that these bounds match the lower bound.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Dynamic Regret for Online Convex Optimization with Squared l2 Norm Switching Cost\",\"authors\":\"Qingsong Liu, Yaoyu Zhang\",\"doi\":\"10.23919/ACC53348.2022.9867328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate online convex optimization (OCO) with squared l2 norm switching cost, which has great applicability but very little work has been done on it. Specifically, we provide a new theoretical analysis in terms of dynamic regret and lower bounds for the case when loss functions are strongly-convex and smooth or only smooth. We show that by applying the advanced Online Multiple Gradient Descent (OMGD) and Online Optimistic Mirror Descent (OOMD) algorithms that are originally proposed for classic OCO, we can achieve state-of-the-art performance bounds for OCO with squared l2 norm switching cost. Furthermore, we show that these bounds match the lower bound.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了l2范数交换代价为平方的在线凸优化(OCO)算法,该算法具有很强的适用性,但目前在这方面的研究还很少。具体来说,我们对损失函数是强凸光滑或仅光滑的情况下的动态遗憾和下界提供了新的理论分析。我们表明,通过应用最初为经典OCO提出的先进的在线多重梯度下降(OMGD)和在线乐观镜像下降(OOMD)算法,我们可以实现具有l2范数切换代价平方的OCO的最先进性能界限。进一步,我们证明了这些边界与下界相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Dynamic Regret for Online Convex Optimization with Squared l2 Norm Switching Cost
In this paper, we investigate online convex optimization (OCO) with squared l2 norm switching cost, which has great applicability but very little work has been done on it. Specifically, we provide a new theoretical analysis in terms of dynamic regret and lower bounds for the case when loss functions are strongly-convex and smooth or only smooth. We show that by applying the advanced Online Multiple Gradient Descent (OMGD) and Online Optimistic Mirror Descent (OOMD) algorithms that are originally proposed for classic OCO, we can achieve state-of-the-art performance bounds for OCO with squared l2 norm switching cost. Furthermore, we show that these bounds match the lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1