使用小波响应和支持向量机分析心音

M. Guermoui, M. L. Mekhalfi, K. Ferroudji
{"title":"使用小波响应和支持向量机分析心音","authors":"M. Guermoui, M. L. Mekhalfi, K. Ferroudji","doi":"10.1109/WOSSPA.2013.6602368","DOIUrl":null,"url":null,"abstract":"Over the last decade, computerized heart screening techniques have been increasingly receiving attention. In general, one can say that such techniques can be categorized as: with, or without the so-called Electrocardiogram (ECG) signal. Considering this latter strategy, we devote this paper with the intention to design an algorithm that provides with heart sounds known as Phonocardiograms (PGC) investigation for further definition of the present pathology if any. A novel algorithm for heart sounds segmentation is also presented. The decision making is accomplished by means of support vector machines (SVM) classifier which is fed by characteristic features extracted from PCGs basing on wavelet filter banks coefficients so that PCG signals are classified into five classes: normal heart sound (NHS), aortic stenosis (AS), aortic insufficiency (Al) mitral stenosis (MS), and mitral insufficiency (MI). The SVM was trained on a low-dimensional feature space, and tested on relatively a big dataset in order to show its generalization capability.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Heart sounds analysis using wavelets responses and support vector machines\",\"authors\":\"M. Guermoui, M. L. Mekhalfi, K. Ferroudji\",\"doi\":\"10.1109/WOSSPA.2013.6602368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, computerized heart screening techniques have been increasingly receiving attention. In general, one can say that such techniques can be categorized as: with, or without the so-called Electrocardiogram (ECG) signal. Considering this latter strategy, we devote this paper with the intention to design an algorithm that provides with heart sounds known as Phonocardiograms (PGC) investigation for further definition of the present pathology if any. A novel algorithm for heart sounds segmentation is also presented. The decision making is accomplished by means of support vector machines (SVM) classifier which is fed by characteristic features extracted from PCGs basing on wavelet filter banks coefficients so that PCG signals are classified into five classes: normal heart sound (NHS), aortic stenosis (AS), aortic insufficiency (Al) mitral stenosis (MS), and mitral insufficiency (MI). The SVM was trained on a low-dimensional feature space, and tested on relatively a big dataset in order to show its generalization capability.\",\"PeriodicalId\":417940,\"journal\":{\"name\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOSSPA.2013.6602368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在过去的十年中,计算机心脏筛查技术越来越受到关注。一般来说,这种技术可以分为:有或没有所谓的心电图(ECG)信号。考虑到后一种策略,我们在本文中致力于设计一种算法,该算法提供被称为心音图(PGC)调查的心音,以进一步定义当前的病理。提出了一种新的心音分割算法。采用支持向量机(SVM)分类器,基于小波滤波器组系数提取心电信号特征,将心电信号分为正常心音(NHS)、主动脉狭窄(AS)、主动脉不全(Al)、二尖瓣狭窄(MS)和二尖瓣不全(MI) 5类。支持向量机在低维特征空间上进行训练,并在相对较大的数据集上进行测试,以显示其泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart sounds analysis using wavelets responses and support vector machines
Over the last decade, computerized heart screening techniques have been increasingly receiving attention. In general, one can say that such techniques can be categorized as: with, or without the so-called Electrocardiogram (ECG) signal. Considering this latter strategy, we devote this paper with the intention to design an algorithm that provides with heart sounds known as Phonocardiograms (PGC) investigation for further definition of the present pathology if any. A novel algorithm for heart sounds segmentation is also presented. The decision making is accomplished by means of support vector machines (SVM) classifier which is fed by characteristic features extracted from PCGs basing on wavelet filter banks coefficients so that PCG signals are classified into five classes: normal heart sound (NHS), aortic stenosis (AS), aortic insufficiency (Al) mitral stenosis (MS), and mitral insufficiency (MI). The SVM was trained on a low-dimensional feature space, and tested on relatively a big dataset in order to show its generalization capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor estimation and visualization using dMRI Effect of multi-users and multipaths on the performance of an adaptive serial acquisition scheme for DS/CDMA systems Relay self interference minimisation using tapped filter New procedure in designing 2D-IIR filters based on 2D-FIR filters approximation Empirical mode decomposition based support vector machines for microemboli classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1