多输出脑解码和适应缺失数据的全贝叶斯多任务学习

A. Marquand, Steven C. R. Williams, O. Doyle, M. J. Rosa
{"title":"多输出脑解码和适应缺失数据的全贝叶斯多任务学习","authors":"A. Marquand, Steven C. R. Williams, O. Doyle, M. J. Rosa","doi":"10.1109/PRNI.2014.6858533","DOIUrl":null,"url":null,"abstract":"Multi-task learning (MTL) has recently been demonstrated to be highly promising for decoding multiple target variables from neuroimaging data. Its primary advantage is that it makes more efficient use of the data than existing decoding models, leading to improved accuracy. In this work, we propose a novel Bayesian MTL approach, motivated by problems such as clinical applications where accurate quantification of uncertainty is crucial. We present a Markov chain Monte Carlo approach to perform inference in the model and demonstrate the approach using a publicly available neuroimaging dataset. We study the conditions where MTL is likely to improve performance: we first evaluate MTL as an approach for accommodating missing data, which is an important problem that has received little attention from the neuroimaging community. We then examine whether it is beneficial to include classification and regression tasks in the same model. We relate our conclusions to results from geostatistics, where MTL methods were pioneered, and make recommendations for neuroimaging practitioners using MTL.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"13 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Full Bayesian multi-task learning for multi-output brain decoding and accommodating missing data\",\"authors\":\"A. Marquand, Steven C. R. Williams, O. Doyle, M. J. Rosa\",\"doi\":\"10.1109/PRNI.2014.6858533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-task learning (MTL) has recently been demonstrated to be highly promising for decoding multiple target variables from neuroimaging data. Its primary advantage is that it makes more efficient use of the data than existing decoding models, leading to improved accuracy. In this work, we propose a novel Bayesian MTL approach, motivated by problems such as clinical applications where accurate quantification of uncertainty is crucial. We present a Markov chain Monte Carlo approach to perform inference in the model and demonstrate the approach using a publicly available neuroimaging dataset. We study the conditions where MTL is likely to improve performance: we first evaluate MTL as an approach for accommodating missing data, which is an important problem that has received little attention from the neuroimaging community. We then examine whether it is beneficial to include classification and regression tasks in the same model. We relate our conclusions to results from geostatistics, where MTL methods were pioneered, and make recommendations for neuroimaging practitioners using MTL.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"13 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多任务学习(MTL)最近被证明在从神经成像数据中解码多个目标变量方面具有很高的前景。它的主要优点是比现有的解码模型更有效地利用数据,从而提高了精度。在这项工作中,我们提出了一种新的贝叶斯MTL方法,其动机是临床应用等问题,其中精确量化不确定性至关重要。我们提出了一种马尔可夫链蒙特卡罗方法来执行模型中的推理,并使用公开可用的神经成像数据集演示了该方法。我们研究了MTL可能提高性能的条件:我们首先评估了MTL作为一种适应缺失数据的方法,这是一个重要的问题,但很少受到神经影像学社区的关注。然后,我们检查在同一模型中包含分类和回归任务是否有益。我们将我们的结论与地质统计学的结果联系起来,其中MTL方法是首创的,并为使用MTL的神经成像从业者提出建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full Bayesian multi-task learning for multi-output brain decoding and accommodating missing data
Multi-task learning (MTL) has recently been demonstrated to be highly promising for decoding multiple target variables from neuroimaging data. Its primary advantage is that it makes more efficient use of the data than existing decoding models, leading to improved accuracy. In this work, we propose a novel Bayesian MTL approach, motivated by problems such as clinical applications where accurate quantification of uncertainty is crucial. We present a Markov chain Monte Carlo approach to perform inference in the model and demonstrate the approach using a publicly available neuroimaging dataset. We study the conditions where MTL is likely to improve performance: we first evaluate MTL as an approach for accommodating missing data, which is an important problem that has received little attention from the neuroimaging community. We then examine whether it is beneficial to include classification and regression tasks in the same model. We relate our conclusions to results from geostatistics, where MTL methods were pioneered, and make recommendations for neuroimaging practitioners using MTL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1