一种使用动态数据交换的云数据中心优化方法

Efstratios Rappos, Stephan Robert, R. Riedi
{"title":"一种使用动态数据交换的云数据中心优化方法","authors":"Efstratios Rappos, Stephan Robert, R. Riedi","doi":"10.1109/CloudNet.2013.6710573","DOIUrl":null,"url":null,"abstract":"Distributed data center architectures have been recently developed for a more efficient and economical storage of data. In many models of distributed storage, the aim is to store the data in such a way so that the storage costs are minimized and increased redundancy requirements are maintained. However, many approaches do not fully consider issues relating to delivering the data to the end user and the associated costs that this creates. We present an integer programming optimization model for determining the optimal allocation of data components among a network of Cloud data servers in such a way that the total costs of additional storage, estimated data retrieval costs and network delay penalties is minimized. The method is suitable for periodic dynamic reconfiguration of the Cloud data servers, so that the when localized data request spikes occur the data can be moved to a closer or cheaper data server for cost reduction and increased efficiency.","PeriodicalId":262262,"journal":{"name":"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Cloud data center optimization approach using dynamic data interchanges\",\"authors\":\"Efstratios Rappos, Stephan Robert, R. Riedi\",\"doi\":\"10.1109/CloudNet.2013.6710573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed data center architectures have been recently developed for a more efficient and economical storage of data. In many models of distributed storage, the aim is to store the data in such a way so that the storage costs are minimized and increased redundancy requirements are maintained. However, many approaches do not fully consider issues relating to delivering the data to the end user and the associated costs that this creates. We present an integer programming optimization model for determining the optimal allocation of data components among a network of Cloud data servers in such a way that the total costs of additional storage, estimated data retrieval costs and network delay penalties is minimized. The method is suitable for periodic dynamic reconfiguration of the Cloud data servers, so that the when localized data request spikes occur the data can be moved to a closer or cheaper data server for cost reduction and increased efficiency.\",\"PeriodicalId\":262262,\"journal\":{\"name\":\"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet.2013.6710573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet.2013.6710573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分布式数据中心体系结构是为了更高效、更经济地存储数据而发展起来的。在许多分布式存储模型中,目标是以这样一种方式存储数据,以便将存储成本降至最低,并保持增加的冗余需求。但是,许多方法没有充分考虑与向最终用户交付数据相关的问题以及由此产生的相关成本。我们提出了一个整数规划优化模型,用于确定云数据服务器网络中数据组件的最佳分配,从而使额外存储的总成本、估计的数据检索成本和网络延迟惩罚最小化。该方法适用于云数据服务器的周期性动态重新配置,以便在发生本地化数据请求峰值时,可以将数据移动到更近或更便宜的数据服务器,从而降低成本并提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cloud data center optimization approach using dynamic data interchanges
Distributed data center architectures have been recently developed for a more efficient and economical storage of data. In many models of distributed storage, the aim is to store the data in such a way so that the storage costs are minimized and increased redundancy requirements are maintained. However, many approaches do not fully consider issues relating to delivering the data to the end user and the associated costs that this creates. We present an integer programming optimization model for determining the optimal allocation of data components among a network of Cloud data servers in such a way that the total costs of additional storage, estimated data retrieval costs and network delay penalties is minimized. The method is suitable for periodic dynamic reconfiguration of the Cloud data servers, so that the when localized data request spikes occur the data can be moved to a closer or cheaper data server for cost reduction and increased efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Request dispatching for cheap energy prices in cloud data centers Trust management system for Opportunistic Cloud Services Autonomic scaling of Cloud Computing resources using BN-based prediction models Service-oriented trust and reputation management system for multi-tier cloud Automatic server role identification for cloud infrastructure construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1