COCOPLOT:彩色折叠绘图软件,使用颜色将3D数据视为2D图像

M. Druett, A. G. Pietrow, G. Vissers, C. Robustini, Flavio Calvo
{"title":"COCOPLOT:彩色折叠绘图软件,使用颜色将3D数据视为2D图像","authors":"M. Druett, A. G. Pietrow, G. Vissers, C. Robustini, Flavio Calvo","doi":"10.1093/rasti/rzac003","DOIUrl":null,"url":null,"abstract":"\n Most modern solar observatories deliver data products formatted as 3D spatio-temporal data cubes, that contain additional, higher dimensions with spectral and/or polarimetric information. This multi-dimensional complexity presents a major challenge when browsing for features of interest in several dimensions simultaneously. We developed the COlor COllapsed PLOTting (COCOPLOT) software as a quick-look and context image software, to convey spectral profile or time evolution from all the spatial pixels (x, y) in a 3D [nx, ny, nλ] or [nx, ny, nt] data cube as a single image, using colour. This can avoid the need to scan through many wavelengths, creating difference and composite images when searching for signals satisfying multiple criteria. Filters are generated for the red, green, and blue channels by selecting values of interest to highlight in each channel, and their weightings. These filters are combined with the data cube over the third dimension axis to produce an nx × ny × 3 cube displayed as one true colour image. Some use cases are presented for data from the Swedish 1-m Solar Telescope and Interface Region Imaging Spectrograph (IRIS), including Hα solar flare data, a comparison with k-means clustering for identifying asymmetries in the Ca ii K line and off-limb coronal rain in IRIS C ii slit-jaw images. These illustrate identification by colour alone using COCOPLOT of locations including line wing or central enhancement, broadening, wing absorption, and sites with intermittent flows or time-persistent features. COCOPLOT is publicly available in both IDL and Python.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"COCOPLOT: COlor COllapsed PLOTting software Using colour to view 3D data as a 2D image\",\"authors\":\"M. Druett, A. G. Pietrow, G. Vissers, C. Robustini, Flavio Calvo\",\"doi\":\"10.1093/rasti/rzac003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Most modern solar observatories deliver data products formatted as 3D spatio-temporal data cubes, that contain additional, higher dimensions with spectral and/or polarimetric information. This multi-dimensional complexity presents a major challenge when browsing for features of interest in several dimensions simultaneously. We developed the COlor COllapsed PLOTting (COCOPLOT) software as a quick-look and context image software, to convey spectral profile or time evolution from all the spatial pixels (x, y) in a 3D [nx, ny, nλ] or [nx, ny, nt] data cube as a single image, using colour. This can avoid the need to scan through many wavelengths, creating difference and composite images when searching for signals satisfying multiple criteria. Filters are generated for the red, green, and blue channels by selecting values of interest to highlight in each channel, and their weightings. These filters are combined with the data cube over the third dimension axis to produce an nx × ny × 3 cube displayed as one true colour image. Some use cases are presented for data from the Swedish 1-m Solar Telescope and Interface Region Imaging Spectrograph (IRIS), including Hα solar flare data, a comparison with k-means clustering for identifying asymmetries in the Ca ii K line and off-limb coronal rain in IRIS C ii slit-jaw images. These illustrate identification by colour alone using COCOPLOT of locations including line wing or central enhancement, broadening, wing absorption, and sites with intermittent flows or time-persistent features. COCOPLOT is publicly available in both IDL and Python.\",\"PeriodicalId\":367327,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzac003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzac003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数现代太阳观测站提供的数据产品格式为三维时空数据立方体,其中包含附加的、更高维度的光谱和/或极化信息。当同时在多个维度上浏览感兴趣的特性时,这种多维复杂性提出了一个主要挑战。我们开发了颜色折叠绘图(COCOPLOT)软件作为快速查看和上下文图像软件,以3D [nx, ny, nλ]或[nx, ny, nt]数据立方体中的所有空间像素(x, y)作为单个图像,使用颜色来传达光谱轮廓或时间演变。这可以避免在搜索满足多个标准的信号时需要扫描多个波长,从而产生差异和合成图像。通过选择要在每个通道中突出显示的感兴趣的值及其权重,为红色、绿色和蓝色通道生成过滤器。这些过滤器与第三维轴上的数据立方体相结合,产生一个nx × ny × 3立方体,显示为一个真彩色图像。介绍了瑞典1米太阳望远镜和界面区域成像光谱仪(IRIS)数据的一些用例,包括Hα太阳耀斑数据,与K均值聚类的比较,以识别Ca ii K线的不对称性和IRIS ii裂隙颚图像中的离翼日冕雨。这些说明了使用COCOPLOT单独通过颜色识别的位置,包括线翼或中心增强,扩大,翼吸收,以及间歇性流动或时间持续特征的位置。COCOPLOT在IDL和Python中都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COCOPLOT: COlor COllapsed PLOTting software Using colour to view 3D data as a 2D image
Most modern solar observatories deliver data products formatted as 3D spatio-temporal data cubes, that contain additional, higher dimensions with spectral and/or polarimetric information. This multi-dimensional complexity presents a major challenge when browsing for features of interest in several dimensions simultaneously. We developed the COlor COllapsed PLOTting (COCOPLOT) software as a quick-look and context image software, to convey spectral profile or time evolution from all the spatial pixels (x, y) in a 3D [nx, ny, nλ] or [nx, ny, nt] data cube as a single image, using colour. This can avoid the need to scan through many wavelengths, creating difference and composite images when searching for signals satisfying multiple criteria. Filters are generated for the red, green, and blue channels by selecting values of interest to highlight in each channel, and their weightings. These filters are combined with the data cube over the third dimension axis to produce an nx × ny × 3 cube displayed as one true colour image. Some use cases are presented for data from the Swedish 1-m Solar Telescope and Interface Region Imaging Spectrograph (IRIS), including Hα solar flare data, a comparison with k-means clustering for identifying asymmetries in the Ca ii K line and off-limb coronal rain in IRIS C ii slit-jaw images. These illustrate identification by colour alone using COCOPLOT of locations including line wing or central enhancement, broadening, wing absorption, and sites with intermittent flows or time-persistent features. COCOPLOT is publicly available in both IDL and Python.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying LEO satellite platforms with boosted decision trees PyExoCross: a Python program for generating spectra and cross sections from molecular line lists The verification of periodicity with the use of recurrent neural networks REPUBLIC: A variability-preserving systematic-correction algorithm for PLATO’s multi-camera light curves A simple spacecraft – vector intersection methodology and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1