结构复合材料中嵌入式应变传感器的增材制造

Dongfang Zhao, Jacob Meves, Anirban Mondal, M. Saha, Yingtao Liu
{"title":"结构复合材料中嵌入式应变传感器的增材制造","authors":"Dongfang Zhao, Jacob Meves, Anirban Mondal, M. Saha, Yingtao Liu","doi":"10.1115/imece2022-94366","DOIUrl":null,"url":null,"abstract":"\n In this paper, a multi-walled nanotube-based nanocomposite is developed for the 3D printing of embedded strain sensors in structural composites. The formulation of nanocomposites is investigated, and the optimal nanotube concentration is identified, considering multiple aspects including cost, processing capability, and printing capability. The developed nanocomposites are directly printed onto glass fiber fabrics using the material extrusion-based additive manufacturing method. Then, the 3D printed nanocomposites in the format of strain gauges are employed for the fabrication of continuous fiber-reinforced composites with embedded sensors. To demonstrate the load and strain sensing capability, composite laminate beam samples are fabricated for testing. The microstructures, potentially embedded voids, and nanoparticle distributions are characterized using a scanning electron microscope. Moreover, the load sensing functionality of the manufactured glass fiber composites using embedded nanocomposite strain gauge is characterized under 3-point bending load conditions. The sensitivity, repeatability, and reliability of the 3D printed nanocomposites are experimentally characterized using a standard mechanical testing system. Particularly, the effects of maximum load and load rates on sensitivities of the developed composites are tested. The 3D printed strain gauges can be used for the monitoring of composite integrity, indicating their safety and reliability under complex and fatigue loading conditions.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Embedded Strain Sensors in Structural Composites\",\"authors\":\"Dongfang Zhao, Jacob Meves, Anirban Mondal, M. Saha, Yingtao Liu\",\"doi\":\"10.1115/imece2022-94366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a multi-walled nanotube-based nanocomposite is developed for the 3D printing of embedded strain sensors in structural composites. The formulation of nanocomposites is investigated, and the optimal nanotube concentration is identified, considering multiple aspects including cost, processing capability, and printing capability. The developed nanocomposites are directly printed onto glass fiber fabrics using the material extrusion-based additive manufacturing method. Then, the 3D printed nanocomposites in the format of strain gauges are employed for the fabrication of continuous fiber-reinforced composites with embedded sensors. To demonstrate the load and strain sensing capability, composite laminate beam samples are fabricated for testing. The microstructures, potentially embedded voids, and nanoparticle distributions are characterized using a scanning electron microscope. Moreover, the load sensing functionality of the manufactured glass fiber composites using embedded nanocomposite strain gauge is characterized under 3-point bending load conditions. The sensitivity, repeatability, and reliability of the 3D printed nanocomposites are experimentally characterized using a standard mechanical testing system. Particularly, the effects of maximum load and load rates on sensitivities of the developed composites are tested. The 3D printed strain gauges can be used for the monitoring of composite integrity, indicating their safety and reliability under complex and fatigue loading conditions.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种多壁纳米管基纳米复合材料,用于结构复合材料中嵌入式应变传感器的3D打印。研究了纳米复合材料的配方,并从成本、加工能力和打印能力等多方面考虑,确定了最佳的纳米管浓度。采用基于材料挤压的增材制造方法,将纳米复合材料直接打印到玻璃纤维织物上。然后,将3D打印的纳米复合材料以应变片的形式用于制造嵌入传感器的连续纤维增强复合材料。为了证明复合材料层合梁的载荷和应变传感能力,制作了复合材料层合梁样品进行测试。利用扫描电子显微镜对其微观结构、潜在的嵌入空洞和纳米颗粒分布进行了表征。此外,采用嵌入式纳米复合材料应变片制备的玻璃纤维复合材料在三点弯曲载荷条件下的载荷敏感功能进行了表征。采用标准机械测试系统对3D打印纳米复合材料的灵敏度、重复性和可靠性进行了实验表征。特别地,测试了最大载荷和载荷速率对所研制的复合材料灵敏度的影响。3D打印应变片可用于监测复合材料的完整性,表明其在复杂和疲劳载荷条件下的安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Manufacturing of Embedded Strain Sensors in Structural Composites
In this paper, a multi-walled nanotube-based nanocomposite is developed for the 3D printing of embedded strain sensors in structural composites. The formulation of nanocomposites is investigated, and the optimal nanotube concentration is identified, considering multiple aspects including cost, processing capability, and printing capability. The developed nanocomposites are directly printed onto glass fiber fabrics using the material extrusion-based additive manufacturing method. Then, the 3D printed nanocomposites in the format of strain gauges are employed for the fabrication of continuous fiber-reinforced composites with embedded sensors. To demonstrate the load and strain sensing capability, composite laminate beam samples are fabricated for testing. The microstructures, potentially embedded voids, and nanoparticle distributions are characterized using a scanning electron microscope. Moreover, the load sensing functionality of the manufactured glass fiber composites using embedded nanocomposite strain gauge is characterized under 3-point bending load conditions. The sensitivity, repeatability, and reliability of the 3D printed nanocomposites are experimentally characterized using a standard mechanical testing system. Particularly, the effects of maximum load and load rates on sensitivities of the developed composites are tested. The 3D printed strain gauges can be used for the monitoring of composite integrity, indicating their safety and reliability under complex and fatigue loading conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1