基于两指数和的路径损耗模型的随机梯度下降法器件间距离估计

Deepali Kushwaha, Ankur Pandey, Sudhir Kumar
{"title":"基于两指数和的路径损耗模型的随机梯度下降法器件间距离估计","authors":"Deepali Kushwaha, Ankur Pandey, Sudhir Kumar","doi":"10.1109/ANTS.2018.8710135","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sum of two exponentials based path loss model for inter-device range estimation using Stochastic Gradient Descent (SGD) method. We observe Bluetooth Received Signal Strength Indication (RSSI) data for short-range distance estimation. Bluetooth location accuracy is very high for short-range localization systems and hence it is widely used in gadgets. This paper proposes a new model for the relationship between distance and three parameters namely RSSI, signal-to-noise ratio (SNR) and the data rate of the Bluetooth signal. We consider four different environments for evaluating various path loss models. The best path loss model for all the parameters is then further used for estimating the distance. We also show that the SGD method outperforms the Gradient Descent (GD) method in terms of location accuracy and is computationally efficient.","PeriodicalId":273443,"journal":{"name":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sum of Two Exponentials Based Path Loss Model for Inter-Device Range Estimation using Stochastic Gradient Descent Method\",\"authors\":\"Deepali Kushwaha, Ankur Pandey, Sudhir Kumar\",\"doi\":\"10.1109/ANTS.2018.8710135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a sum of two exponentials based path loss model for inter-device range estimation using Stochastic Gradient Descent (SGD) method. We observe Bluetooth Received Signal Strength Indication (RSSI) data for short-range distance estimation. Bluetooth location accuracy is very high for short-range localization systems and hence it is widely used in gadgets. This paper proposes a new model for the relationship between distance and three parameters namely RSSI, signal-to-noise ratio (SNR) and the data rate of the Bluetooth signal. We consider four different environments for evaluating various path loss models. The best path loss model for all the parameters is then further used for estimating the distance. We also show that the SGD method outperforms the Gradient Descent (GD) method in terms of location accuracy and is computationally efficient.\",\"PeriodicalId\":273443,\"journal\":{\"name\":\"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTS.2018.8710135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2018.8710135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个基于两个指数和的路径损耗模型,用于随机梯度下降(SGD)方法的器件间距离估计。我们观察了蓝牙接收信号强度指示(RSSI)数据用于短距离估计。蓝牙定位精度高,适用于近距离定位系统,因此在小工具中得到广泛应用。本文提出了一种新的距离与蓝牙信号RSSI、信噪比(SNR)和数据速率三个参数之间关系的模型。我们考虑了四种不同的环境来评估各种路径损耗模型。然后使用所有参数的最佳路径损失模型进一步估计距离。我们还表明,SGD方法在定位精度方面优于梯度下降(GD)方法,并且计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sum of Two Exponentials Based Path Loss Model for Inter-Device Range Estimation using Stochastic Gradient Descent Method
In this paper, we propose a sum of two exponentials based path loss model for inter-device range estimation using Stochastic Gradient Descent (SGD) method. We observe Bluetooth Received Signal Strength Indication (RSSI) data for short-range distance estimation. Bluetooth location accuracy is very high for short-range localization systems and hence it is widely used in gadgets. This paper proposes a new model for the relationship between distance and three parameters namely RSSI, signal-to-noise ratio (SNR) and the data rate of the Bluetooth signal. We consider four different environments for evaluating various path loss models. The best path loss model for all the parameters is then further used for estimating the distance. We also show that the SGD method outperforms the Gradient Descent (GD) method in terms of location accuracy and is computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Resource Sharing in Ethernet-based 5G Mobile Fronthaul Networks Investigation of an Enhanced Efficiency Class-E Power Amplifier with Input Wave Shaping Network Edge Assisted DASH Video Caching Mechanism for Multi-access Edge Computing CMNS: An Energy-Efficient Communication Scheme for Wireless Sensor Networks Fast algorithm for Blind Deinterleaving of a Block Interleaver using binary and non-binary Block codes in a telecommunication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1