{"title":"具有t < n/3和o(n2)消息的无签名异步拜占庭一致性","authors":"A. Mostéfaoui, Moumen Hamouma, M. Raynal","doi":"10.1145/2611462.2611468","DOIUrl":null,"url":null,"abstract":"This paper presents a new round-based asynchronous consensus algorithm that copes with up to t < n/3 Byzantine processes, where n is the total number of processes. In addition of not using signature, not assuming a computationally-limited adversary, while being optimal with respect to the value of t, this algorithm has several noteworthy properties: the expected number of rounds to decide is four, each round is composed of two or three communication steps and involves O(n2) messages, and a message is composed of a round number plus a single bit. To attain this goal, the consensus algorithm relies on a common coin as defined by Rabin, and a new extremely simple and powerful broadcast abstraction suited to binary values. The main target when designing this algorithm was to obtain a cheap and simple algorithm. This was motivated by the fact that, among the first-class properties, simplicity --albeit sometimes under-estimated or even ignored-- is a major one.","PeriodicalId":186800,"journal":{"name":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","volume":"1 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Signature-free asynchronous byzantine consensus with t < n/3 and o(n2) messages\",\"authors\":\"A. Mostéfaoui, Moumen Hamouma, M. Raynal\",\"doi\":\"10.1145/2611462.2611468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new round-based asynchronous consensus algorithm that copes with up to t < n/3 Byzantine processes, where n is the total number of processes. In addition of not using signature, not assuming a computationally-limited adversary, while being optimal with respect to the value of t, this algorithm has several noteworthy properties: the expected number of rounds to decide is four, each round is composed of two or three communication steps and involves O(n2) messages, and a message is composed of a round number plus a single bit. To attain this goal, the consensus algorithm relies on a common coin as defined by Rabin, and a new extremely simple and powerful broadcast abstraction suited to binary values. The main target when designing this algorithm was to obtain a cheap and simple algorithm. This was motivated by the fact that, among the first-class properties, simplicity --albeit sometimes under-estimated or even ignored-- is a major one.\",\"PeriodicalId\":186800,\"journal\":{\"name\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"volume\":\"1 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611462.2611468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611462.2611468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signature-free asynchronous byzantine consensus with t < n/3 and o(n2) messages
This paper presents a new round-based asynchronous consensus algorithm that copes with up to t < n/3 Byzantine processes, where n is the total number of processes. In addition of not using signature, not assuming a computationally-limited adversary, while being optimal with respect to the value of t, this algorithm has several noteworthy properties: the expected number of rounds to decide is four, each round is composed of two or three communication steps and involves O(n2) messages, and a message is composed of a round number plus a single bit. To attain this goal, the consensus algorithm relies on a common coin as defined by Rabin, and a new extremely simple and powerful broadcast abstraction suited to binary values. The main target when designing this algorithm was to obtain a cheap and simple algorithm. This was motivated by the fact that, among the first-class properties, simplicity --albeit sometimes under-estimated or even ignored-- is a major one.