{"title":"从磁声系统到J-T黑洞:回忆之旅","authors":"F. Williams","doi":"10.3934/cam.2023017","DOIUrl":null,"url":null,"abstract":"We assign a Riemannian metric to a system of nonlinear equations that describe the one-dimensional propagation of long magnetoacoustic waves (also called magnetosonic waves) in a cold plasma under the inference of a transverse magnetic field. The metric, which in general is expressed in terms of the density of the plasma and its speed across the magnetic field, when specialized to a particular solution of the nonlinear system (the Gurevich-Krylov (G-K) solution) is mapped explicitly to a Jackiw-Teitelboim (J-T) black hole metric, which is the main result. Dilaton fields, constructed from data involved in the G-K solution, are presented - which with the plasma metric provide for elliptic function solutions of the J-T equations of motion in 2d dilaton gravity. A correspondence between solutions of the nonlinear plasma system (whose Galilean invariance is also established) and certain solutions of a resonant nonlinear Schrödinger equation is set up, along with some other general background material to render an expository tone in the presentation.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From a magnetoacoustic system to a J-T black hole: A little trip down memory lane\",\"authors\":\"F. Williams\",\"doi\":\"10.3934/cam.2023017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assign a Riemannian metric to a system of nonlinear equations that describe the one-dimensional propagation of long magnetoacoustic waves (also called magnetosonic waves) in a cold plasma under the inference of a transverse magnetic field. The metric, which in general is expressed in terms of the density of the plasma and its speed across the magnetic field, when specialized to a particular solution of the nonlinear system (the Gurevich-Krylov (G-K) solution) is mapped explicitly to a Jackiw-Teitelboim (J-T) black hole metric, which is the main result. Dilaton fields, constructed from data involved in the G-K solution, are presented - which with the plasma metric provide for elliptic function solutions of the J-T equations of motion in 2d dilaton gravity. A correspondence between solutions of the nonlinear plasma system (whose Galilean invariance is also established) and certain solutions of a resonant nonlinear Schrödinger equation is set up, along with some other general background material to render an expository tone in the presentation.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From a magnetoacoustic system to a J-T black hole: A little trip down memory lane
We assign a Riemannian metric to a system of nonlinear equations that describe the one-dimensional propagation of long magnetoacoustic waves (also called magnetosonic waves) in a cold plasma under the inference of a transverse magnetic field. The metric, which in general is expressed in terms of the density of the plasma and its speed across the magnetic field, when specialized to a particular solution of the nonlinear system (the Gurevich-Krylov (G-K) solution) is mapped explicitly to a Jackiw-Teitelboim (J-T) black hole metric, which is the main result. Dilaton fields, constructed from data involved in the G-K solution, are presented - which with the plasma metric provide for elliptic function solutions of the J-T equations of motion in 2d dilaton gravity. A correspondence between solutions of the nonlinear plasma system (whose Galilean invariance is also established) and certain solutions of a resonant nonlinear Schrödinger equation is set up, along with some other general background material to render an expository tone in the presentation.