基于深度强化学习的视觉目标跟踪虚拟仿真

Khurshedjon Farkhodov, Jin-Hyeok Park, Suk-Hwan Lee, Ki-Ryong Kwon
{"title":"基于深度强化学习的视觉目标跟踪虚拟仿真","authors":"Khurshedjon Farkhodov, Jin-Hyeok Park, Suk-Hwan Lee, Ki-Ryong Kwon","doi":"10.1109/ICISCT55600.2022.10146777","DOIUrl":null,"url":null,"abstract":"The current research field of object tracking has become noticeably popular among researchers where AI techniques take place with high-level accuracy. An algorithm with multifunctional abilities had proposed in different proposals in recent years. We proposed a tracking technique integrated with a virtual reality simulator – the AirSim (Areal Informatics and Robotics Simulation) City Environ model using one of the DRL models to control with a drone agent to examine a realistic environment. Additionally, the suggested method had tested via the two public: VisDrone2019 and OTB-100 datasets to compare with conventional strategies to show better performance among recent works.","PeriodicalId":332984,"journal":{"name":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Simulation based Visual Object Tracking via Deep Reinforcement Learning\",\"authors\":\"Khurshedjon Farkhodov, Jin-Hyeok Park, Suk-Hwan Lee, Ki-Ryong Kwon\",\"doi\":\"10.1109/ICISCT55600.2022.10146777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current research field of object tracking has become noticeably popular among researchers where AI techniques take place with high-level accuracy. An algorithm with multifunctional abilities had proposed in different proposals in recent years. We proposed a tracking technique integrated with a virtual reality simulator – the AirSim (Areal Informatics and Robotics Simulation) City Environ model using one of the DRL models to control with a drone agent to examine a realistic environment. Additionally, the suggested method had tested via the two public: VisDrone2019 and OTB-100 datasets to compare with conventional strategies to show better performance among recent works.\",\"PeriodicalId\":332984,\"journal\":{\"name\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCT55600.2022.10146777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCT55600.2022.10146777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的目标跟踪研究领域在研究人员中变得非常受欢迎,人工智能技术以高精确度进行。近年来,在不同的方案中提出了一种具有多功能能力的算法。我们提出了一种与虚拟现实模拟器集成的跟踪技术- AirSim(区域信息学和机器人仿真)城市环境模型,使用其中一个DRL模型来控制无人机代理以检查现实环境。此外,建议的方法通过两个公共数据集进行了测试:VisDrone2019和OTB-100,以与传统策略进行比较,在最近的作品中显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual Simulation based Visual Object Tracking via Deep Reinforcement Learning
The current research field of object tracking has become noticeably popular among researchers where AI techniques take place with high-level accuracy. An algorithm with multifunctional abilities had proposed in different proposals in recent years. We proposed a tracking technique integrated with a virtual reality simulator – the AirSim (Areal Informatics and Robotics Simulation) City Environ model using one of the DRL models to control with a drone agent to examine a realistic environment. Additionally, the suggested method had tested via the two public: VisDrone2019 and OTB-100 datasets to compare with conventional strategies to show better performance among recent works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self heating and DIBL effects in 2D MoS2 based MOSFET with different gate oxide and back oxide materials Memristors: types, characteristics and prospects of use as the main element of the future artificial intelligence An algorithm for parallel processing of traffic signs video on a graphics processor Nonlinear transformations of different type features and the choice of latent space based on them 2D Adiabatic CA Rules over ℤp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1