通过动态频率缩放实现基于noc的mpsoc的QoS

G. Guindani, F. Moraes
{"title":"通过动态频率缩放实现基于noc的mpsoc的QoS","authors":"G. Guindani, F. Moraes","doi":"10.1109/ISSoC.2013.6675275","DOIUrl":null,"url":null,"abstract":"The management of Quality-of-Service (QoS) constraints in NoC-based MPSoCs, with dozens of tasks running simultaneously, is still a challenge. Techniques applied at design or run-time to address this issue adopts different QoS metrics. Designers include in their systems monitoring techniques, adapting at run-time the QoS parameters to cope with the required constraints. In order words, MPSoC are able to self-adapt themselves, while executing a given set of applications. Self-adaptation capability is a key feature to meet applications' requirements in dynamic systems. Dynamic Voltage and Frequency Scaling (DVFS) is an adaptation technique frequently used to reduce the overall energy consumption, not coupled to QoS constraints, as throughput or latency. Another example of adaptation technique is task migration, which focus on throughput or latency optimization. The self-adaptation technique proposed in this paper adopts Dynamic Frequency Scaling (DFS) trading-off power consumption and QoS constraints. Each processor running the applications' tasks initially reaches a steady state leading each task to a frequency level that optimizes the communication with neighbor tasks. The goal of the initial state is to reach a trade-off between power consumption and communication throughput. Next, the application performance is monitored to adjust the frequency level of each task according to the QoS parameters. Results show that the proposed self-adaptability scheme can meet the required QoS constraints, by changing the frequency of the PEs running the application tasks.","PeriodicalId":228272,"journal":{"name":"2013 International Symposium on System on Chip (SoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Achieving QoS in NoC-based MPSoCs through Dynamic Frequency Scaling\",\"authors\":\"G. Guindani, F. Moraes\",\"doi\":\"10.1109/ISSoC.2013.6675275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The management of Quality-of-Service (QoS) constraints in NoC-based MPSoCs, with dozens of tasks running simultaneously, is still a challenge. Techniques applied at design or run-time to address this issue adopts different QoS metrics. Designers include in their systems monitoring techniques, adapting at run-time the QoS parameters to cope with the required constraints. In order words, MPSoC are able to self-adapt themselves, while executing a given set of applications. Self-adaptation capability is a key feature to meet applications' requirements in dynamic systems. Dynamic Voltage and Frequency Scaling (DVFS) is an adaptation technique frequently used to reduce the overall energy consumption, not coupled to QoS constraints, as throughput or latency. Another example of adaptation technique is task migration, which focus on throughput or latency optimization. The self-adaptation technique proposed in this paper adopts Dynamic Frequency Scaling (DFS) trading-off power consumption and QoS constraints. Each processor running the applications' tasks initially reaches a steady state leading each task to a frequency level that optimizes the communication with neighbor tasks. The goal of the initial state is to reach a trade-off between power consumption and communication throughput. Next, the application performance is monitored to adjust the frequency level of each task according to the QoS parameters. Results show that the proposed self-adaptability scheme can meet the required QoS constraints, by changing the frequency of the PEs running the application tasks.\",\"PeriodicalId\":228272,\"journal\":{\"name\":\"2013 International Symposium on System on Chip (SoC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on System on Chip (SoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSoC.2013.6675275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on System on Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSoC.2013.6675275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在具有数十个任务同时运行的基于noc的mpsoc中,服务质量(QoS)约束的管理仍然是一个挑战。在设计或运行时用于解决此问题的技术采用不同的QoS度量。设计人员将其系统监控技术包括在内,在运行时调整QoS参数以应对所需的约束。换句话说,MPSoC能够自适应,同时执行给定的一组应用程序。在动态系统中,自适应能力是满足应用需求的关键特征。动态电压和频率缩放(DVFS)是一种经常用于降低总体能耗的自适应技术,不与吞吐量或延迟等QoS约束相耦合。自适应技术的另一个例子是任务迁移,其重点是吞吐量或延迟优化。本文提出的自适应技术采用动态频率缩放(Dynamic Frequency Scaling, DFS)来平衡功耗和QoS约束。运行应用程序任务的每个处理器最初达到一个稳定状态,将每个任务引导到一个优化与相邻任务通信的频率级别。初始状态的目标是在功耗和通信吞吐量之间达到折衷。接下来,监控应用程序性能,根据QoS参数调整每个任务的频率级别。结果表明,通过改变运行应用任务的pe的频率,所提出的自适应方案能够满足QoS约束要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving QoS in NoC-based MPSoCs through Dynamic Frequency Scaling
The management of Quality-of-Service (QoS) constraints in NoC-based MPSoCs, with dozens of tasks running simultaneously, is still a challenge. Techniques applied at design or run-time to address this issue adopts different QoS metrics. Designers include in their systems monitoring techniques, adapting at run-time the QoS parameters to cope with the required constraints. In order words, MPSoC are able to self-adapt themselves, while executing a given set of applications. Self-adaptation capability is a key feature to meet applications' requirements in dynamic systems. Dynamic Voltage and Frequency Scaling (DVFS) is an adaptation technique frequently used to reduce the overall energy consumption, not coupled to QoS constraints, as throughput or latency. Another example of adaptation technique is task migration, which focus on throughput or latency optimization. The self-adaptation technique proposed in this paper adopts Dynamic Frequency Scaling (DFS) trading-off power consumption and QoS constraints. Each processor running the applications' tasks initially reaches a steady state leading each task to a frequency level that optimizes the communication with neighbor tasks. The goal of the initial state is to reach a trade-off between power consumption and communication throughput. Next, the application performance is monitored to adjust the frequency level of each task according to the QoS parameters. Results show that the proposed self-adaptability scheme can meet the required QoS constraints, by changing the frequency of the PEs running the application tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A family of modular area- and energy-efficient QRD-accelerator architectures SW and HW speculative Nelder-Mead execution for high performance unconstrained optimization Comparison of analog transactions using statistics Efficient distributed memory management in a multi-core H.264 decoder on FPGA Extending IP-XACT to embedded system HW/SW integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1