分布式机器学习网络拓扑生成的统一、灵活框架

Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan
{"title":"分布式机器学习网络拓扑生成的统一、灵活框架","authors":"Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan","doi":"10.1145/3600061.3603132","DOIUrl":null,"url":null,"abstract":"In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified, Flexible Framework in Network Topology Generation for Distributed Machine Learning\",\"authors\":\"Jianhao Liu, Xiaoyan Li, Yanhua Liu, Weibei Fan\",\"doi\":\"10.1145/3600061.3603132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.\",\"PeriodicalId\":228934,\"journal\":{\"name\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600061.3603132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3603132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用自顶向下的设计方法和组合设计理论,提出了一种统一的DML服务器中心网络拓扑设计框架。仿真结果表明,该框架能够有效地支持各种DML任务。我们的框架可以生成兼容的拓扑,以满足各种资源约束和不同的DML任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified, Flexible Framework in Network Topology Generation for Distributed Machine Learning
In this study, we propose a unified framework for designing a class of server-centric network topologies for DML by adopting top-down design method and combinatorial design theory. Simulation results show that this flexible framework is capable of effectively supporting various DML tasks. Our framework can generate compatible topologies that meet various resource constraints and different DML tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadline Enables In-Order Flowlet Switching for Load Balancing Online Detection of 1D and 2D Hierarchical Super-Spreaders in High-Speed Networks ABC: Adaptive Bitrate Algorithm Commander for Multi-Client Video Streaming Bamboo: Boosting Training Efficiency for Real-Time Video Streaming via Online Grouped Federated Transfer Learning Improving Cloud Storage Network Bandwidth Utilization of Scientific Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1