奶牛:一个互联网丰富和质量意识网络服务搜索引擎

Meng Li, Junfeng Zhao, Lijie Wang, Sibo Cai, Bing Xie
{"title":"奶牛:一个互联网丰富和质量意识网络服务搜索引擎","authors":"Meng Li, Junfeng Zhao, Lijie Wang, Sibo Cai, Bing Xie","doi":"10.1109/ICWS.2011.49","DOIUrl":null,"url":null,"abstract":"With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.","PeriodicalId":118512,"journal":{"name":"2011 IEEE International Conference on Web Services","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"CoWS: An Internet-Enriched and Quality-Aware Web Services Search Engine\",\"authors\":\"Meng Li, Junfeng Zhao, Lijie Wang, Sibo Cai, Bing Xie\",\"doi\":\"10.1109/ICWS.2011.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.\",\"PeriodicalId\":118512,\"journal\":{\"name\":\"2011 IEEE International Conference on Web Services\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2011.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随着Internet上可用的Web服务越来越多,人们提出了许多方法来帮助用户发现和选择所需的服务。然而,现有的方法严重依赖于UDDI存储库或WSDL文件中的信息,这实际上是非常有限的。信息的有限性削弱了现有方法的有效性。在本文中,我们提出了一种新的Web服务搜索引擎奶牛,它利用从Internet捕获的信息来丰富Web服务信息,以提供质量感知的Web服务搜索。捕获的信息可以分为两类:功能描述和主观反馈。我们用功能描述来丰富Web服务的描述,用主观反馈来计算Web服务的信誉。CoWS首先根据服务与用户查询的功能相似性对服务进行排序,这些相似性是使用WSDL文件中的描述和丰富的描述计算出来的,然后使用客观质量约束(QoS)和主观质量约束(声誉)对服务进行细化和重新排序。在大型数据集(包括31,129个Web服务)上的实验表明,与现有方法相比,奶牛可以提高Web服务发现和选择的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoWS: An Internet-Enriched and Quality-Aware Web Services Search Engine
With more and more Web services available on the Internet, many approaches have been proposed to help users discover and select desired services. However, existing approaches heavily rely on the information in UDDI repositories or WSDL files, which is quite limited in fact. The limitation of information weakens the effectiveness of existing approaches. In this paper, we present a novel Web services search engine named CoWS, which enriches Web services information using the information captured from the Internet to provide quality-aware Web services search. The information captured can be classified into two groups: functional descriptions and subjective feedbacks. We use the functional descriptions to enrich descriptions of Web services and the subjective feedbacks to calculate Web services' reputation. CoWS first ranks the services according to their functional similarities to a user's query, which are calculated using both descriptions in WSDL files and the enriched descriptions, and then refines and re-ranks the services with both objective quality constraints (QoS) and subjective quality constraints (reputation). The experiments on a large-scale dataset (including 31,129 Web services) show that CoWS can improve the effectiveness of both Web services discovery and selection comparing with existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selection of Composable Web Services Driven by User Requirements Progressive Reliability Forecasting of Service-Oriented Software Opportunistic Composition of Sequentially-Connected Services in Mobile Computing Environments Improving Web API Discovery by Leveraging Social Information CLAM: Cross-Layer Management of Adaptation Decisions for Service-Based Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1