多分辨率小波最小二乘支持向量机网络用于非线性系统建模

T. Mahmoud
{"title":"多分辨率小波最小二乘支持向量机网络用于非线性系统建模","authors":"T. Mahmoud","doi":"10.1109/MMAR.2010.5587200","DOIUrl":null,"url":null,"abstract":"This paper proposes Multi resolution Wavelet Least Squares Support Vector Machine (MRWLS-SVM) network for the nonlinear system modeling. It composes a set of sub-wavelet least squares support vector machine networks with specified resolutions. The outputs of these sub-networks are aggregated via a set of weights to produce the network output. The structure of the MRWLS-SVM network is achieved using the fuzzy c-mean and the least squares support vector algorithm. The stability of the proposed network has been investigated using Lypunov stability theorem. The generalization of the proposed MRWLS-SVM network for the modeling purpose has investigated using two nonlinear systems.","PeriodicalId":336219,"journal":{"name":"2010 15th International Conference on Methods and Models in Automation and Robotics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi resolution wavelet least squares support vector machine network for nonlinear system modeling\",\"authors\":\"T. Mahmoud\",\"doi\":\"10.1109/MMAR.2010.5587200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes Multi resolution Wavelet Least Squares Support Vector Machine (MRWLS-SVM) network for the nonlinear system modeling. It composes a set of sub-wavelet least squares support vector machine networks with specified resolutions. The outputs of these sub-networks are aggregated via a set of weights to produce the network output. The structure of the MRWLS-SVM network is achieved using the fuzzy c-mean and the least squares support vector algorithm. The stability of the proposed network has been investigated using Lypunov stability theorem. The generalization of the proposed MRWLS-SVM network for the modeling purpose has investigated using two nonlinear systems.\",\"PeriodicalId\":336219,\"journal\":{\"name\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2010.5587200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th International Conference on Methods and Models in Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2010.5587200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了多分辨率小波最小二乘支持向量机(MRWLS-SVM)网络用于非线性系统建模。它由一组具有特定分辨率的子小波最小二乘支持向量机网络组成。这些子网络的输出通过一组权重进行聚合以产生网络输出。采用模糊c均值和最小二乘支持向量算法实现了MRWLS-SVM网络的结构。利用Lypunov稳定性定理研究了网络的稳定性。利用两个非线性系统研究了MRWLS-SVM网络的泛化建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi resolution wavelet least squares support vector machine network for nonlinear system modeling
This paper proposes Multi resolution Wavelet Least Squares Support Vector Machine (MRWLS-SVM) network for the nonlinear system modeling. It composes a set of sub-wavelet least squares support vector machine networks with specified resolutions. The outputs of these sub-networks are aggregated via a set of weights to produce the network output. The structure of the MRWLS-SVM network is achieved using the fuzzy c-mean and the least squares support vector algorithm. The stability of the proposed network has been investigated using Lypunov stability theorem. The generalization of the proposed MRWLS-SVM network for the modeling purpose has investigated using two nonlinear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singularly impulsive model of genetic regulatory networks Dissipativity theory for singular systems. Part II: Discrete-time case Switched-structure of linear MIMO controllers for positioning of a drillship on a sea surface Time-varying averaging filter with functions k(t) and T(t) An observer-based state feedback controller design for robot manipulators considering actuators' dynamic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1