研究感知组织线索如何以及何时改善自然图像的边界检测

Leandro A. Loss, G. Bebis, M. Nicolescu, A. Skurikhin
{"title":"研究感知组织线索如何以及何时改善自然图像的边界检测","authors":"Leandro A. Loss, G. Bebis, M. Nicolescu, A. Skurikhin","doi":"10.1109/CVPRW.2008.4562974","DOIUrl":null,"url":null,"abstract":"Boundary detection in natural images represents an important but also challenging problem in computer vision. Motivated by studies in psychophysics claiming that humans use multiple cues for segmentation, several promising methods have been proposed which perform boundary detection by optimally combining local image measurements such as color, texture, and brightness. Very interesting results have been reported by applying these methods on challenging datasets such as the Berkeley segmentation benchmark. Although combining different cues for boundary detection has been shown to outperform methods using a single cue, results can be further improved by integrating perceptual organization cues with the boundary detection process. The main goal of this study is to investigate how and when perceptual organization cues improve boundary detection in natural images. In this context, we investigate the idea of integrating with segmentation the iterative multi-scale tensor voting (IMSTV), a variant of tensor voting (TV) that performs perceptual grouping by analyzing information at multiple-scales and removing background clutter in an iterative fashion, preserving salient, organized structures. The key idea is to use IMSTV to post-process the boundary posterior probability (PB) map produced by segmentation algorithms. Detailed analysis of our experimental results reveals how and when perceptual organization cues are likely to improve or degrade boundary detection. In particular, we show that using perceptual grouping as a post-processing step improves boundary detection in 84% of the grayscale test images in the Berkeley segmentation dataset.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"54 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating how and when perceptual organization cues improve boundary detection in natural images\",\"authors\":\"Leandro A. Loss, G. Bebis, M. Nicolescu, A. Skurikhin\",\"doi\":\"10.1109/CVPRW.2008.4562974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boundary detection in natural images represents an important but also challenging problem in computer vision. Motivated by studies in psychophysics claiming that humans use multiple cues for segmentation, several promising methods have been proposed which perform boundary detection by optimally combining local image measurements such as color, texture, and brightness. Very interesting results have been reported by applying these methods on challenging datasets such as the Berkeley segmentation benchmark. Although combining different cues for boundary detection has been shown to outperform methods using a single cue, results can be further improved by integrating perceptual organization cues with the boundary detection process. The main goal of this study is to investigate how and when perceptual organization cues improve boundary detection in natural images. In this context, we investigate the idea of integrating with segmentation the iterative multi-scale tensor voting (IMSTV), a variant of tensor voting (TV) that performs perceptual grouping by analyzing information at multiple-scales and removing background clutter in an iterative fashion, preserving salient, organized structures. The key idea is to use IMSTV to post-process the boundary posterior probability (PB) map produced by segmentation algorithms. Detailed analysis of our experimental results reveals how and when perceptual organization cues are likely to improve or degrade boundary detection. In particular, we show that using perceptual grouping as a post-processing step improves boundary detection in 84% of the grayscale test images in the Berkeley segmentation dataset.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"54 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4562974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4562974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然图像的边界检测是计算机视觉中一个重要而又具有挑战性的问题。由于心理物理学的研究表明人类使用多种线索进行分割,因此提出了几种有前途的方法,通过最佳地结合局部图像测量(如颜色、纹理和亮度)来进行边界检测。通过将这些方法应用于具有挑战性的数据集(如伯克利分割基准),已经报告了非常有趣的结果。虽然结合不同的线索进行边界检测已被证明优于使用单一线索的方法,但通过将感知组织线索与边界检测过程相结合,结果可以进一步改善。本研究的主要目的是研究感知组织线索如何以及何时改善自然图像的边界检测。在这种情况下,我们研究了将迭代多尺度张量投票(IMSTV)与分割相结合的想法,IMSTV是张量投票(TV)的一种变体,它通过在多尺度上分析信息并以迭代的方式去除背景杂波来执行感知分组,保留显著的、有组织的结构。其关键思想是利用IMSTV对分割算法产生的边界后验概率图进行后处理。对实验结果的详细分析揭示了感知组织线索如何以及何时可能改善或降低边界检测。特别是,我们表明,使用感知分组作为后处理步骤提高了伯克利分割数据集中84%的灰度测试图像的边界检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating how and when perceptual organization cues improve boundary detection in natural images
Boundary detection in natural images represents an important but also challenging problem in computer vision. Motivated by studies in psychophysics claiming that humans use multiple cues for segmentation, several promising methods have been proposed which perform boundary detection by optimally combining local image measurements such as color, texture, and brightness. Very interesting results have been reported by applying these methods on challenging datasets such as the Berkeley segmentation benchmark. Although combining different cues for boundary detection has been shown to outperform methods using a single cue, results can be further improved by integrating perceptual organization cues with the boundary detection process. The main goal of this study is to investigate how and when perceptual organization cues improve boundary detection in natural images. In this context, we investigate the idea of integrating with segmentation the iterative multi-scale tensor voting (IMSTV), a variant of tensor voting (TV) that performs perceptual grouping by analyzing information at multiple-scales and removing background clutter in an iterative fashion, preserving salient, organized structures. The key idea is to use IMSTV to post-process the boundary posterior probability (PB) map produced by segmentation algorithms. Detailed analysis of our experimental results reveals how and when perceptual organization cues are likely to improve or degrade boundary detection. In particular, we show that using perceptual grouping as a post-processing step improves boundary detection in 84% of the grayscale test images in the Berkeley segmentation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1