基于PSO-SSO的支持向量机分类优化

L. Gagnani, K. Wandra, H. Chhinkaniwala
{"title":"基于PSO-SSO的支持向量机分类优化","authors":"L. Gagnani, K. Wandra, H. Chhinkaniwala","doi":"10.1109/CIACT.2017.7977300","DOIUrl":null,"url":null,"abstract":"Classification is one of the widely used technique for data mining of dataset and is done using soft computing approach. Here a novel method called SSO-ELS is proposed for classification of datasets. In this method there is hybridization of Simplified Swarm Optimization (SSO) with ELS (Exchange Local Search), Particle Swarm Optimization (PSO) and Support Vector Machines(SVM) approach. This is done to resolve the issue of selection of hyper parameters in SVM. The selection of hyper parameters in SVM plays a crucial rule which is done by the PSO-SSO approach. This approach has two phases: In first phase best initial parameters of SVM are calculated using SSO with ELS approach and then the best parameters are fed into SVM using PSO in second phase. Brief review of classification methods is discussed. Experiments on UCI datasets indicate that the proposed SSO-PSO-SVM achieves better results than CS-PSO-SVM with respect to classification accuracy and F-measure.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification optimization using PSO-SSO based support vector machine\",\"authors\":\"L. Gagnani, K. Wandra, H. Chhinkaniwala\",\"doi\":\"10.1109/CIACT.2017.7977300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is one of the widely used technique for data mining of dataset and is done using soft computing approach. Here a novel method called SSO-ELS is proposed for classification of datasets. In this method there is hybridization of Simplified Swarm Optimization (SSO) with ELS (Exchange Local Search), Particle Swarm Optimization (PSO) and Support Vector Machines(SVM) approach. This is done to resolve the issue of selection of hyper parameters in SVM. The selection of hyper parameters in SVM plays a crucial rule which is done by the PSO-SSO approach. This approach has two phases: In first phase best initial parameters of SVM are calculated using SSO with ELS approach and then the best parameters are fed into SVM using PSO in second phase. Brief review of classification methods is discussed. Experiments on UCI datasets indicate that the proposed SSO-PSO-SVM achieves better results than CS-PSO-SVM with respect to classification accuracy and F-measure.\",\"PeriodicalId\":218079,\"journal\":{\"name\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIACT.2017.7977300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类是数据集挖掘中应用最广泛的技术之一,采用软计算方法进行分类。本文提出了一种新的数据集分类方法——SSO-ELS。该方法将简化群算法与ELS (Exchange Local Search)、粒子群算法(Particle Swarm Optimization, PSO)和支持向量机算法(Support Vector Machines, SVM)相结合。这样做是为了解决支持向量机的超参数选择问题。支持向量机中超参数的选择起着至关重要的作用,而PSO-SSO方法就是其中的关键。该方法分为两个阶段:第一阶段采用单点登录和ELS方法计算支持向量机的最佳初始参数,第二阶段采用粒子群算法将最佳参数输入支持向量机。简要回顾了分类方法。在UCI数据集上的实验表明,本文提出的SSO-PSO-SVM在分类精度和f测度方面都优于CS-PSO-SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification optimization using PSO-SSO based support vector machine
Classification is one of the widely used technique for data mining of dataset and is done using soft computing approach. Here a novel method called SSO-ELS is proposed for classification of datasets. In this method there is hybridization of Simplified Swarm Optimization (SSO) with ELS (Exchange Local Search), Particle Swarm Optimization (PSO) and Support Vector Machines(SVM) approach. This is done to resolve the issue of selection of hyper parameters in SVM. The selection of hyper parameters in SVM plays a crucial rule which is done by the PSO-SSO approach. This approach has two phases: In first phase best initial parameters of SVM are calculated using SSO with ELS approach and then the best parameters are fed into SVM using PSO in second phase. Brief review of classification methods is discussed. Experiments on UCI datasets indicate that the proposed SSO-PSO-SVM achieves better results than CS-PSO-SVM with respect to classification accuracy and F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart solar tracking system for optimal power generation SVM with Gaussian kernel-based image spam detection on textual features Comparison between LDA & NMF for event-detection from large text stream data Research on the wisdom education platform of cloud computing architecture Robust TS fuzzy controller for helicopter via parallel distributed compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1