ResidualCovid-Net:利用胸部CT图像筛选COVID-19的可解释深度网络

Md. Farukuzzaman Faruk
{"title":"ResidualCovid-Net:利用胸部CT图像筛选COVID-19的可解释深度网络","authors":"Md. Farukuzzaman Faruk","doi":"10.1109/ICEEE54059.2021.9718776","DOIUrl":null,"url":null,"abstract":"Coronavirus illness, commonly abbreviated as COVID-19, has been designated a global pandemic. To prevent the spread of this deadly virus, those who are infected must be quarantined or evacuated. In this situation, a quick and systematic testing toolkit is required. Recent research has discovered that radiography chest CT has significant patterns and attributes that may be utilized to precisely identify COVID-19. A deep learning-based network called ResidualCovid-Net was suggested in this study to identify COVID-19 infestations using CT scans. The proposed ResidualCovid-Net is inspired by the original Resnet architecture. Another barrier in this aspect is clinically distinguishing among COVID-19, pneumonia and normal instances. ResidualCovid-Net was designed to identify anomalies in CT scans that may successfully delineate COVID-19, common pneumonia and normal cases. Gradients weighted class activation maps showed how well the network located anomalies in CT images and demonstrated the network’s generalization ability.","PeriodicalId":188366,"journal":{"name":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ResidualCovid-Net: An Interpretable Deep Network to Screen COVID-19 Utilizing Chest CT Images\",\"authors\":\"Md. Farukuzzaman Faruk\",\"doi\":\"10.1109/ICEEE54059.2021.9718776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus illness, commonly abbreviated as COVID-19, has been designated a global pandemic. To prevent the spread of this deadly virus, those who are infected must be quarantined or evacuated. In this situation, a quick and systematic testing toolkit is required. Recent research has discovered that radiography chest CT has significant patterns and attributes that may be utilized to precisely identify COVID-19. A deep learning-based network called ResidualCovid-Net was suggested in this study to identify COVID-19 infestations using CT scans. The proposed ResidualCovid-Net is inspired by the original Resnet architecture. Another barrier in this aspect is clinically distinguishing among COVID-19, pneumonia and normal instances. ResidualCovid-Net was designed to identify anomalies in CT scans that may successfully delineate COVID-19, common pneumonia and normal cases. Gradients weighted class activation maps showed how well the network located anomalies in CT images and demonstrated the network’s generalization ability.\",\"PeriodicalId\":188366,\"journal\":{\"name\":\"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE54059.2021.9718776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE54059.2021.9718776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

冠状病毒疾病,通常缩写为COVID-19,已被指定为全球大流行。为了防止这种致命病毒的传播,感染者必须被隔离或疏散。在这种情况下,需要一个快速和系统的测试工具包。最近的研究发现,胸部x线CT具有重要的模式和属性,可用于精确识别COVID-19。本研究提出了一种名为ResidualCovid-Net的基于深度学习的网络,通过CT扫描识别COVID-19感染。提出的ResidualCovid-Net的灵感来自于原始的Resnet架构。这方面的另一个障碍是在临床上区分新冠肺炎、肺炎和正常病例。ResidualCovid-Net旨在识别CT扫描中的异常,这些异常可能成功描述COVID-19、普通肺炎和正常病例。梯度加权类激活图显示了网络在CT图像中定位异常的能力,并证明了网络的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ResidualCovid-Net: An Interpretable Deep Network to Screen COVID-19 Utilizing Chest CT Images
Coronavirus illness, commonly abbreviated as COVID-19, has been designated a global pandemic. To prevent the spread of this deadly virus, those who are infected must be quarantined or evacuated. In this situation, a quick and systematic testing toolkit is required. Recent research has discovered that radiography chest CT has significant patterns and attributes that may be utilized to precisely identify COVID-19. A deep learning-based network called ResidualCovid-Net was suggested in this study to identify COVID-19 infestations using CT scans. The proposed ResidualCovid-Net is inspired by the original Resnet architecture. Another barrier in this aspect is clinically distinguishing among COVID-19, pneumonia and normal instances. ResidualCovid-Net was designed to identify anomalies in CT scans that may successfully delineate COVID-19, common pneumonia and normal cases. Gradients weighted class activation maps showed how well the network located anomalies in CT images and demonstrated the network’s generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer-Aided Polyp Removal Detection in Endoscopic Images FPGA based Histogram Equalization for Image Processing Spreading Loss Model for Channel Characterization of Future 6G Terahertz Communication Networks Impact of Cladding Rectangular Bars on the Antiresonant Hollow Core Fiber Predicting Autism Spectrum Disorder Based On Gender Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1