限制条件下德摩根公式的收缩

M. Paterson, Uri Zwick
{"title":"限制条件下德摩根公式的收缩","authors":"M. Paterson, Uri Zwick","doi":"10.1109/SFCS.1991.185385","DOIUrl":null,"url":null,"abstract":"It is shown that a random restriction leaving only a fraction in of the input variables unassigned reduces the expected de Morgan formula size of the induced function by a factor of O( in /sup 1.63/). This is an improvement over previous results. The new exponent yields an increased lower bound of approximately n/sup 2.63/ for the de Morgan formula size of a function in P defined by A.E. Andreev (1987). This is the largest lower bound known, even for functions in NP.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"40 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Shrinkage of de Morgan formulae under restriction\",\"authors\":\"M. Paterson, Uri Zwick\",\"doi\":\"10.1109/SFCS.1991.185385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that a random restriction leaving only a fraction in of the input variables unassigned reduces the expected de Morgan formula size of the induced function by a factor of O( in /sup 1.63/). This is an improvement over previous results. The new exponent yields an increased lower bound of approximately n/sup 2.63/ for the de Morgan formula size of a function in P defined by A.E. Andreev (1987). This is the largest lower bound known, even for functions in NP.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"40 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

结果表明,随机限制只留下一小部分未分配的输入变量,将诱导函数的期望de Morgan公式大小降低了0 (in /sup 1.63/)。这是对以前结果的改进。新的指数为A.E. Andreev(1987)定义的P中的函数的de Morgan公式大小提供了大约n/sup 2.63/的增加下界。这是已知的最大下界,即使对于NP中的函数也是如此
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shrinkage of de Morgan formulae under restriction
It is shown that a random restriction leaving only a fraction in of the input variables unassigned reduces the expected de Morgan formula size of the induced function by a factor of O( in /sup 1.63/). This is an improvement over previous results. The new exponent yields an increased lower bound of approximately n/sup 2.63/ for the de Morgan formula size of a function in P defined by A.E. Andreev (1987). This is the largest lower bound known, even for functions in NP.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotically optimal PRAM emulation on faulty hypercubes Dynamic maintenance of geometric structures made easy On-line scheduling in the presence of overload A quadratic time algorithm for the minmax length triangulation Lower bounds for the complexity of reliable Boolean circuits with noisy gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1