L. Guang, Syed M. A. H. Jafri, Bo Yang, J. Plosila, H. Tenhunen
{"title":"多核计算系统中动态组织的分层支撑结构","authors":"L. Guang, Syed M. A. H. Jafri, Bo Yang, J. Plosila, H. Tenhunen","doi":"10.5220/0004389702520261","DOIUrl":null,"url":null,"abstract":"Hierarchical supporting structures for dynamic organization in many-core computing systems are presented. With profound hardware variations and unpredictable errors, dependability becomes a challenging issue in the emerging many-core systems. To provide fault-tolerance against processor failures or performance degradation, dynamic organization is proposed which allows clusters to be created and updated at the run-time. Hierarchical supporting structures are designed for each level of monitoring agents, to enable the tracing, storing and updating of component and system status. These supporting structures need to follow software/hardware co-design to provide small and scalable overhead, while accommodating the functions of agents on the corresponding level. This paper presents the architectural design, functional simulation and implementation analysis. The study demonstrates that the proposed structures facilitate the dynamic organization in case of processor failures and incur small area overhead on many-core systems.","PeriodicalId":298357,"journal":{"name":"International Conference on Pervasive and Embedded Computing and Communication Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Supporting Structure for Dynamic Organization in Many-core Computing Systems\",\"authors\":\"L. Guang, Syed M. A. H. Jafri, Bo Yang, J. Plosila, H. Tenhunen\",\"doi\":\"10.5220/0004389702520261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical supporting structures for dynamic organization in many-core computing systems are presented. With profound hardware variations and unpredictable errors, dependability becomes a challenging issue in the emerging many-core systems. To provide fault-tolerance against processor failures or performance degradation, dynamic organization is proposed which allows clusters to be created and updated at the run-time. Hierarchical supporting structures are designed for each level of monitoring agents, to enable the tracing, storing and updating of component and system status. These supporting structures need to follow software/hardware co-design to provide small and scalable overhead, while accommodating the functions of agents on the corresponding level. This paper presents the architectural design, functional simulation and implementation analysis. The study demonstrates that the proposed structures facilitate the dynamic organization in case of processor failures and incur small area overhead on many-core systems.\",\"PeriodicalId\":298357,\"journal\":{\"name\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0004389702520261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pervasive and Embedded Computing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004389702520261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Supporting Structure for Dynamic Organization in Many-core Computing Systems
Hierarchical supporting structures for dynamic organization in many-core computing systems are presented. With profound hardware variations and unpredictable errors, dependability becomes a challenging issue in the emerging many-core systems. To provide fault-tolerance against processor failures or performance degradation, dynamic organization is proposed which allows clusters to be created and updated at the run-time. Hierarchical supporting structures are designed for each level of monitoring agents, to enable the tracing, storing and updating of component and system status. These supporting structures need to follow software/hardware co-design to provide small and scalable overhead, while accommodating the functions of agents on the corresponding level. This paper presents the architectural design, functional simulation and implementation analysis. The study demonstrates that the proposed structures facilitate the dynamic organization in case of processor failures and incur small area overhead on many-core systems.