计算时间分辨成像,单光子传感和非视距成像

David B. Lindell, Matthew O'Toole, S. Narasimhan, R. Raskar
{"title":"计算时间分辨成像,单光子传感和非视距成像","authors":"David B. Lindell, Matthew O'Toole, S. Narasimhan, R. Raskar","doi":"10.1145/3388769.3407481","DOIUrl":null,"url":null,"abstract":"Emerging detector technologies are capable of ultrafast capture of single photons, enabling imaging at the speed of light. Not only can these detectors be used for imaging at essentially trillion frame-per-second rates, but combining them with computational algorithms has given rise to unprecedented new imaging capabilities. Computational time-resolved imaging has enabled new techniques for 3D imaging, light transport analysis, imaging around corners or behind occluders, and imaging through scattering media such as fog, murky water, or human tissue. With applications in autonomous navigation, robotic vision, human-computer interaction, and more, this is an area of rapidly growing interest. In this course, we provide an introduction to computational time-resolved imaging and single photon sensing with a focus on hardware, applications, and algorithms. We describe various types of emerging single-photon detectors, including single-photon avalanche diodes and avalanche photodiodes, which are among the most popular time-resolved detectors. Physically accurate models for these detectors are described, including modeling parameters and noise statistics used in most computational algorithms. From the application side, we discuss the use of ultrafast active illumination for 3D imaging and transient imaging, and we describe the state of the art in non-line-of-sight imaging, which requires modelling and inverting the propagation and scattering of light from a visible surface to a hidden object and back. We describe time-resolved computational algorithms used in each of these applications and offer insights on potential future directions.","PeriodicalId":167147,"journal":{"name":"ACM SIGGRAPH 2020 Courses","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational time-resolved imaging, single-photon sensing, and non-line-of-sight imaging\",\"authors\":\"David B. Lindell, Matthew O'Toole, S. Narasimhan, R. Raskar\",\"doi\":\"10.1145/3388769.3407481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging detector technologies are capable of ultrafast capture of single photons, enabling imaging at the speed of light. Not only can these detectors be used for imaging at essentially trillion frame-per-second rates, but combining them with computational algorithms has given rise to unprecedented new imaging capabilities. Computational time-resolved imaging has enabled new techniques for 3D imaging, light transport analysis, imaging around corners or behind occluders, and imaging through scattering media such as fog, murky water, or human tissue. With applications in autonomous navigation, robotic vision, human-computer interaction, and more, this is an area of rapidly growing interest. In this course, we provide an introduction to computational time-resolved imaging and single photon sensing with a focus on hardware, applications, and algorithms. We describe various types of emerging single-photon detectors, including single-photon avalanche diodes and avalanche photodiodes, which are among the most popular time-resolved detectors. Physically accurate models for these detectors are described, including modeling parameters and noise statistics used in most computational algorithms. From the application side, we discuss the use of ultrafast active illumination for 3D imaging and transient imaging, and we describe the state of the art in non-line-of-sight imaging, which requires modelling and inverting the propagation and scattering of light from a visible surface to a hidden object and back. We describe time-resolved computational algorithms used in each of these applications and offer insights on potential future directions.\",\"PeriodicalId\":167147,\"journal\":{\"name\":\"ACM SIGGRAPH 2020 Courses\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2020 Courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388769.3407481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2020 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388769.3407481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新兴的探测器技术能够超快地捕获单个光子,从而实现光速成像。这些探测器不仅可以以每秒万亿帧的速率进行成像,而且将它们与计算算法相结合,可以产生前所未有的新成像能力。计算时间分辨成像技术为3D成像、光传输分析、在角落或遮挡物后面成像以及通过雾、浑浊水或人体组织等散射介质成像提供了新技术。随着在自主导航、机器人视觉、人机交互等领域的应用,这是一个迅速增长的兴趣领域。在本课程中,我们将介绍计算时间分辨率成像和单光子传感,重点是硬件,应用和算法。我们描述了各种类型的新兴单光子探测器,包括单光子雪崩二极管和雪崩光电二极管,这是最流行的时间分辨探测器。描述了这些探测器的物理精确模型,包括建模参数和大多数计算算法中使用的噪声统计。从应用方面,我们讨论了超快主动照明在3D成像和瞬态成像中的应用,并描述了非视距成像中的最新技术,这需要建模和反演光从可见表面到隐藏物体的传播和散射。我们描述了这些应用中使用的时间分辨计算算法,并提供了对潜在未来方向的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational time-resolved imaging, single-photon sensing, and non-line-of-sight imaging
Emerging detector technologies are capable of ultrafast capture of single photons, enabling imaging at the speed of light. Not only can these detectors be used for imaging at essentially trillion frame-per-second rates, but combining them with computational algorithms has given rise to unprecedented new imaging capabilities. Computational time-resolved imaging has enabled new techniques for 3D imaging, light transport analysis, imaging around corners or behind occluders, and imaging through scattering media such as fog, murky water, or human tissue. With applications in autonomous navigation, robotic vision, human-computer interaction, and more, this is an area of rapidly growing interest. In this course, we provide an introduction to computational time-resolved imaging and single photon sensing with a focus on hardware, applications, and algorithms. We describe various types of emerging single-photon detectors, including single-photon avalanche diodes and avalanche photodiodes, which are among the most popular time-resolved detectors. Physically accurate models for these detectors are described, including modeling parameters and noise statistics used in most computational algorithms. From the application side, we discuss the use of ultrafast active illumination for 3D imaging and transient imaging, and we describe the state of the art in non-line-of-sight imaging, which requires modelling and inverting the propagation and scattering of light from a visible surface to a hidden object and back. We describe time-resolved computational algorithms used in each of these applications and offer insights on potential future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to cinematic scientific visualization Understanding AR inside and out --- Part Two: expanding out and into the world Physically based shading in theory and practice Automatic 3D reconstruction of structured indoor environments ML/DL roundup
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1