卷积神经网络应用于可视化文档分析的最佳实践

P. Simard, David Steinkraus, John C. Platt
{"title":"卷积神经网络应用于可视化文档分析的最佳实践","authors":"P. Simard, David Steinkraus, John C. Platt","doi":"10.1109/ICDAR.2003.1227801","DOIUrl":null,"url":null,"abstract":"Neural networks are a powerful technology forclassification of visual inputs arising from documents.However, there is a confusing plethora of different neuralnetwork methods that are used in the literature and inindustry. This paper describes a set of concrete bestpractices that document analysis researchers can use toget good results with neural networks. The mostimportant practice is getting a training set as large aspossible: we expand the training set by adding a newform of distorted data. The next most important practiceis that convolutional neural networks are better suited forvisual document tasks than fully connected networks. Wepropose that a simple \"do-it-yourself\" implementation ofconvolution with a flexible architecture is suitable formany visual document problems. This simpleconvolutional neural network does not require complexmethods, such as momentum, weight decay, structure-dependentlearning rates, averaging layers, tangent prop,or even finely-tuning the architecture. The end result is avery simple yet general architecture which can yieldstate-of-the-art performance for document analysis. Weillustrate our claims on the MNIST set of English digitimages.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"4 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2755","resultStr":"{\"title\":\"Best practices for convolutional neural networks applied to visual document analysis\",\"authors\":\"P. Simard, David Steinkraus, John C. Platt\",\"doi\":\"10.1109/ICDAR.2003.1227801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are a powerful technology forclassification of visual inputs arising from documents.However, there is a confusing plethora of different neuralnetwork methods that are used in the literature and inindustry. This paper describes a set of concrete bestpractices that document analysis researchers can use toget good results with neural networks. The mostimportant practice is getting a training set as large aspossible: we expand the training set by adding a newform of distorted data. The next most important practiceis that convolutional neural networks are better suited forvisual document tasks than fully connected networks. Wepropose that a simple \\\"do-it-yourself\\\" implementation ofconvolution with a flexible architecture is suitable formany visual document problems. This simpleconvolutional neural network does not require complexmethods, such as momentum, weight decay, structure-dependentlearning rates, averaging layers, tangent prop,or even finely-tuning the architecture. The end result is avery simple yet general architecture which can yieldstate-of-the-art performance for document analysis. Weillustrate our claims on the MNIST set of English digitimages.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"4 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2755\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2755

摘要

神经网络是一种强大的技术,用于分类来自文档的视觉输入。然而,在文献和工业中使用的不同的神经网络方法令人困惑。本文描述了一组具体的最佳实践,文件分析研究人员可以使用神经网络获得良好的结果。最重要的实践是获得尽可能大的训练集:我们通过添加新形式的扭曲数据来扩展训练集。下一个最重要的实践是,卷积神经网络比完全连接的网络更适合于视觉文档任务。我们提出一个简单的“自己动手”的卷积实现,具有灵活的架构,适用于许多可视化文档问题。这个简单的卷积神经网络不需要复杂的方法,比如动量、权重衰减、结构相关学习率、平均层、切线支撑,甚至微调架构。最终的结果是非常简单而通用的架构,可以为文档分析提供最先进的性能。我们用MNIST的英语数字图像集来说明我们的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best practices for convolutional neural networks applied to visual document analysis
Neural networks are a powerful technology forclassification of visual inputs arising from documents.However, there is a confusing plethora of different neuralnetwork methods that are used in the literature and inindustry. This paper describes a set of concrete bestpractices that document analysis researchers can use toget good results with neural networks. The mostimportant practice is getting a training set as large aspossible: we expand the training set by adding a newform of distorted data. The next most important practiceis that convolutional neural networks are better suited forvisual document tasks than fully connected networks. Wepropose that a simple "do-it-yourself" implementation ofconvolution with a flexible architecture is suitable formany visual document problems. This simpleconvolutional neural network does not require complexmethods, such as momentum, weight decay, structure-dependentlearning rates, averaging layers, tangent prop,or even finely-tuning the architecture. The end result is avery simple yet general architecture which can yieldstate-of-the-art performance for document analysis. Weillustrate our claims on the MNIST set of English digitimages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1