DeepDiffuse:预测级联中的“谁”和“何时”

Mohammad Raihanul Islam, S. Muthiah, B. Adhikari, B. Prakash, Naren Ramakrishnan
{"title":"DeepDiffuse:预测级联中的“谁”和“何时”","authors":"Mohammad Raihanul Islam, S. Muthiah, B. Adhikari, B. Prakash, Naren Ramakrishnan","doi":"10.1109/ICDM.2018.00134","DOIUrl":null,"url":null,"abstract":"Cascades are an accepted model to capturing how information diffuses across social network platforms. A large body of research has been focused on dissecting the anatomy of such cascades and forecasting their progression. One recurring theme involves predicting the next stage(s) of cascades utilizing pertinent information such as the underlying social network, structural properties of nodes (e.g., degree) and (partial) histories of cascade propagation. However, such type of granular information is rarely available in practice. We study in this paper the problem of cascade prediction utilizing only two types of (coarse) information, viz. which node is infected and its corresponding infection time. We first construct several simple baselines to solve this cascade prediction problem. Then we describe the shortcomings of these methods and propose a new solution leveraging recent progress in embeddings and attention models from representation learning. We also perform an exhaustive analysis of our methods on several real world datasets. Our proposed model outperforms the baselines and several other state-of-the-art methods.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"DeepDiffuse: Predicting the 'Who' and 'When' in Cascades\",\"authors\":\"Mohammad Raihanul Islam, S. Muthiah, B. Adhikari, B. Prakash, Naren Ramakrishnan\",\"doi\":\"10.1109/ICDM.2018.00134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cascades are an accepted model to capturing how information diffuses across social network platforms. A large body of research has been focused on dissecting the anatomy of such cascades and forecasting their progression. One recurring theme involves predicting the next stage(s) of cascades utilizing pertinent information such as the underlying social network, structural properties of nodes (e.g., degree) and (partial) histories of cascade propagation. However, such type of granular information is rarely available in practice. We study in this paper the problem of cascade prediction utilizing only two types of (coarse) information, viz. which node is infected and its corresponding infection time. We first construct several simple baselines to solve this cascade prediction problem. Then we describe the shortcomings of these methods and propose a new solution leveraging recent progress in embeddings and attention models from representation learning. We also perform an exhaustive analysis of our methods on several real world datasets. Our proposed model outperforms the baselines and several other state-of-the-art methods.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

级联是捕获信息如何在社交网络平台上传播的公认模型。大量的研究已经集中在剖析这种级联的解剖结构和预测它们的进展上。一个反复出现的主题涉及利用相关信息预测级联的下一阶段,如潜在的社会网络、节点的结构属性(例如,程度)和级联传播的(部分)历史。然而,这种类型的细粒度信息在实践中很少可用。本文研究了仅利用两类(粗)信息的级联预测问题,即哪个节点被感染及其相应的感染时间。我们首先构造几个简单的基线来解决这个级联预测问题。然后,我们描述了这些方法的缺点,并利用表征学习中嵌入和注意模型的最新进展提出了一种新的解决方案。我们还在几个真实世界的数据集上对我们的方法进行了详尽的分析。我们提出的模型优于基线和其他几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepDiffuse: Predicting the 'Who' and 'When' in Cascades
Cascades are an accepted model to capturing how information diffuses across social network platforms. A large body of research has been focused on dissecting the anatomy of such cascades and forecasting their progression. One recurring theme involves predicting the next stage(s) of cascades utilizing pertinent information such as the underlying social network, structural properties of nodes (e.g., degree) and (partial) histories of cascade propagation. However, such type of granular information is rarely available in practice. We study in this paper the problem of cascade prediction utilizing only two types of (coarse) information, viz. which node is infected and its corresponding infection time. We first construct several simple baselines to solve this cascade prediction problem. Then we describe the shortcomings of these methods and propose a new solution leveraging recent progress in embeddings and attention models from representation learning. We also perform an exhaustive analysis of our methods on several real world datasets. Our proposed model outperforms the baselines and several other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1