{"title":"可解释的即时漏洞预测:我们做到了吗?","authors":"Reem Aleithan","doi":"10.1109/ICSE-Companion52605.2021.00056","DOIUrl":null,"url":null,"abstract":"Explaining the prediction results of software bug prediction models is a challenging task, which can provide useful information for developers to understand and fix the predicted bugs. Recently, Jirayus et al.'s proposed to use two model-agnostic techniques (i.e., LIME and iBreakDown) to explain the prediction results of bug prediction models. Although their experiments on file-level bug prediction show promising results, the performance of these techniques on explaining the results of just-in-time (i.e., change-level) bug prediction is unknown. This paper conducts the first empirical study to explore the explainability of these model-agnostic techniques on just-in-time bug prediction models. Specifically, this study takes a three-step approach, 1) replicating previously widely used just-in-time bug prediction models, 2) applying Local Interpretability Model-agnostic Explanation Technique (LIME) and iBreakDown on the prediction results, and 3) manually evaluating the explanations for buggy instances (i.e. positive predictions) against the root cause of the bugs. The results of our experiment show that LIME and iBreakDown fail to explain defect prediction explanations for just-in-time bug prediction models, unlike file-level. This paper urges for new approaches for explaining the results of just-in-time bug prediction models.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Explainable Just-In-Time Bug Prediction: Are We There Yet?\",\"authors\":\"Reem Aleithan\",\"doi\":\"10.1109/ICSE-Companion52605.2021.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explaining the prediction results of software bug prediction models is a challenging task, which can provide useful information for developers to understand and fix the predicted bugs. Recently, Jirayus et al.'s proposed to use two model-agnostic techniques (i.e., LIME and iBreakDown) to explain the prediction results of bug prediction models. Although their experiments on file-level bug prediction show promising results, the performance of these techniques on explaining the results of just-in-time (i.e., change-level) bug prediction is unknown. This paper conducts the first empirical study to explore the explainability of these model-agnostic techniques on just-in-time bug prediction models. Specifically, this study takes a three-step approach, 1) replicating previously widely used just-in-time bug prediction models, 2) applying Local Interpretability Model-agnostic Explanation Technique (LIME) and iBreakDown on the prediction results, and 3) manually evaluating the explanations for buggy instances (i.e. positive predictions) against the root cause of the bugs. The results of our experiment show that LIME and iBreakDown fail to explain defect prediction explanations for just-in-time bug prediction models, unlike file-level. This paper urges for new approaches for explaining the results of just-in-time bug prediction models.\",\"PeriodicalId\":136929,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion52605.2021.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

解释软件bug预测模型的预测结果是一项具有挑战性的任务,它可以为开发人员理解和修复预测的bug提供有用的信息。最近,Jirayus等人提出使用两种模型不可知技术(即LIME和iBreakDown)来解释bug预测模型的预测结果。尽管他们在文件级bug预测上的实验显示了有希望的结果,但这些技术在解释即时(即更改级)bug预测结果方面的性能是未知的。本文首次进行了实证研究,探讨了这些模型不可知技术对即时缺陷预测模型的可解释性。具体来说,本研究采取了三步走的方法,1)复制以前广泛使用的即时错误预测模型,2)对预测结果应用局部可解释性模型不可知解释技术(LIME)和iBreakDown, 3)针对错误的根本原因手动评估错误实例的解释(即积极预测)。我们的实验结果表明,与文件级不同,LIME和iBreakDown无法解释即时错误预测模型的缺陷预测解释。本文敦促采用新的方法来解释即时错误预测模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainable Just-In-Time Bug Prediction: Are We There Yet?
Explaining the prediction results of software bug prediction models is a challenging task, which can provide useful information for developers to understand and fix the predicted bugs. Recently, Jirayus et al.'s proposed to use two model-agnostic techniques (i.e., LIME and iBreakDown) to explain the prediction results of bug prediction models. Although their experiments on file-level bug prediction show promising results, the performance of these techniques on explaining the results of just-in-time (i.e., change-level) bug prediction is unknown. This paper conducts the first empirical study to explore the explainability of these model-agnostic techniques on just-in-time bug prediction models. Specifically, this study takes a three-step approach, 1) replicating previously widely used just-in-time bug prediction models, 2) applying Local Interpretability Model-agnostic Explanation Technique (LIME) and iBreakDown on the prediction results, and 3) manually evaluating the explanations for buggy instances (i.e. positive predictions) against the root cause of the bugs. The results of our experiment show that LIME and iBreakDown fail to explain defect prediction explanations for just-in-time bug prediction models, unlike file-level. This paper urges for new approaches for explaining the results of just-in-time bug prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artifact Evaluation Program Committee Doctoral Symposium Program Committee Posters Program Committee CodeShovel: A Reusable and Available Tool for Extracting Source Code Histories Replication Package for Article: Data-Oriented Differential Testing of Object-Relational Mapping Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1