从可视化到关联规则:一种自动方法

Gwenael Bothorel, M. Serrurier, C. Hurter
{"title":"从可视化到关联规则:一种自动方法","authors":"Gwenael Bothorel, M. Serrurier, C. Hurter","doi":"10.1145/2508244.2508252","DOIUrl":null,"url":null,"abstract":"The main goal of Data Mining is the research of relevant information from a huge volume of data. It is generally achieved either by automatic algorithms or by the visual exploration of data. Thanks to algorithms, an exhaustive set of patterns matching specific measures can be found. But the volume of extracted information can be greater than the volume of initial data. Visual Data Mining allows the specialist to focus on a specific area of data that may describe interesting patterns. However, it is often limited by the difficulty to deal with a great number of multi dimensional data. In this paper, we propose to mix an automatic and a manual method, by driving the automatic extraction using a data scatter plot visualization. This visualization affects the number of rules found and their construction. We illustrate our method on two databases. The first describes one month French air traffic and the second stems from 2012 KDD Cup database.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From Visualization to Association Rules: an automatic approach\",\"authors\":\"Gwenael Bothorel, M. Serrurier, C. Hurter\",\"doi\":\"10.1145/2508244.2508252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of Data Mining is the research of relevant information from a huge volume of data. It is generally achieved either by automatic algorithms or by the visual exploration of data. Thanks to algorithms, an exhaustive set of patterns matching specific measures can be found. But the volume of extracted information can be greater than the volume of initial data. Visual Data Mining allows the specialist to focus on a specific area of data that may describe interesting patterns. However, it is often limited by the difficulty to deal with a great number of multi dimensional data. In this paper, we propose to mix an automatic and a manual method, by driving the automatic extraction using a data scatter plot visualization. This visualization affects the number of rules found and their construction. We illustrate our method on two databases. The first describes one month French air traffic and the second stems from 2012 KDD Cup database.\",\"PeriodicalId\":235681,\"journal\":{\"name\":\"Spring conference on Computer graphics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spring conference on Computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2508244.2508252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2508244.2508252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据挖掘的主要目标是从海量数据中研究相关信息。它通常是通过自动算法或通过数据的可视化探索来实现的。多亏了算法,可以找到一组详尽的模式来匹配特定的度量。但是提取的信息量可能大于初始数据的信息量。可视化数据挖掘允许专家专注于可能描述有趣模式的特定数据区域。然而,由于难以处理大量的多维数据,它往往受到限制。在本文中,我们提出了一种混合的自动和手动方法,通过使用数据散点图可视化驱动自动提取。这种可视化会影响找到的规则的数量及其构造。我们在两个数据库上演示了我们的方法。第一个描述了一个月的法国空中交通,第二个来自2012年的KDD杯数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Visualization to Association Rules: an automatic approach
The main goal of Data Mining is the research of relevant information from a huge volume of data. It is generally achieved either by automatic algorithms or by the visual exploration of data. Thanks to algorithms, an exhaustive set of patterns matching specific measures can be found. But the volume of extracted information can be greater than the volume of initial data. Visual Data Mining allows the specialist to focus on a specific area of data that may describe interesting patterns. However, it is often limited by the difficulty to deal with a great number of multi dimensional data. In this paper, we propose to mix an automatic and a manual method, by driving the automatic extraction using a data scatter plot visualization. This visualization affects the number of rules found and their construction. We illustrate our method on two databases. The first describes one month French air traffic and the second stems from 2012 KDD Cup database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing in 3D with reference points and polynomials Green's function solution to subsurface light transport for BRDF computation Doppler-based 3D Blood Flow Imaging and Visualization Parallel MDOM for light transport in participating media Dynamic Texture Enlargement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1