有和没有前缘缺口的四轴飞行器螺旋桨近场和远场噪声衰减

K. V. Treuren, C. Wisniewski, E. Cinnamon
{"title":"有和没有前缘缺口的四轴飞行器螺旋桨近场和远场噪声衰减","authors":"K. V. Treuren, C. Wisniewski, E. Cinnamon","doi":"10.1115/GT2018-75973","DOIUrl":null,"url":null,"abstract":"Electric propulsion is being considered for a wide range of airframes from large commercial transports to the small Unmanned Aerial Systems (UASs). These electric systems, especially for small fixed wing UASs and quadcopters, need to be both efficient and quiet if they are to operate in an urban/populated environment or used in an Intelligence, Surveillance, and Reconnaissance (ISR) scenario.\n A propeller test facility was developed to record propeller performance and sound generation in the near field behind UAS propellers. The question of defining near and far field noise was studied by characterizing sound decay with distance from a UAS propeller. Defining near and far field noise is a subject that is not addressed well in the literature. Far field noise generally follows the 1/r decay rate and near field does not. Behind the propeller there are other flow field interactions that also change the decay rate, which this study illustrates. The data presented in this paper shows the difficulty in measuring sound around a UAS propeller and begins to resolve this topic. Previous UAS propeller design work by the authors resulted in propellers that were quieter in the near field and at the same time more efficient. Their studies showed RPM and tip vortex formation both contribute significantly to propeller sound generation. Disrupting the tip vortex formation should decrease the noise being generated. The current work extends these initial findings and examines the noise generation of a stock quadcopter propeller from a DJI Phantom 2 platform. One inch aft of the plane of rotation, this propeller, a 9.4 × 5.0, has a peak sound pressure level (SPL) of approximately 118 dBA under normal static operation producing 0.7 lbf of thrust at approximately 5900 RPM. Modifications were made to four stock propellers by cutting a notch perpendicular to the leading edge of the propeller at the 0.75 r/R and 0.87 r/R locations. The notches were of different depths and widths. Of the modifications, three of the configurations did not noticeably decrease the sound. However; the final configuration reduced the peak near field SPL to 111 dBA, a 6% reduction in dBA over the stock configuration corresponding to a greater than 50% reduction in sound generation. Smoke visualization confirms that a notch located at 0.87 r/R effectively disrupts the tip vortex formation, causing the tip vortices to dissipate much earlier than the stock propeller without the notch. Examining the noise frequency spectrums associated with both the stock and the modified propeller also confirm that the notch changes the magnitude and frequency distribution of the sound being generated.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Near and Far Field Noise Decay From a Quadcopter Propeller With and Without a Leading Edge Notch\",\"authors\":\"K. V. Treuren, C. Wisniewski, E. Cinnamon\",\"doi\":\"10.1115/GT2018-75973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric propulsion is being considered for a wide range of airframes from large commercial transports to the small Unmanned Aerial Systems (UASs). These electric systems, especially for small fixed wing UASs and quadcopters, need to be both efficient and quiet if they are to operate in an urban/populated environment or used in an Intelligence, Surveillance, and Reconnaissance (ISR) scenario.\\n A propeller test facility was developed to record propeller performance and sound generation in the near field behind UAS propellers. The question of defining near and far field noise was studied by characterizing sound decay with distance from a UAS propeller. Defining near and far field noise is a subject that is not addressed well in the literature. Far field noise generally follows the 1/r decay rate and near field does not. Behind the propeller there are other flow field interactions that also change the decay rate, which this study illustrates. The data presented in this paper shows the difficulty in measuring sound around a UAS propeller and begins to resolve this topic. Previous UAS propeller design work by the authors resulted in propellers that were quieter in the near field and at the same time more efficient. Their studies showed RPM and tip vortex formation both contribute significantly to propeller sound generation. Disrupting the tip vortex formation should decrease the noise being generated. The current work extends these initial findings and examines the noise generation of a stock quadcopter propeller from a DJI Phantom 2 platform. One inch aft of the plane of rotation, this propeller, a 9.4 × 5.0, has a peak sound pressure level (SPL) of approximately 118 dBA under normal static operation producing 0.7 lbf of thrust at approximately 5900 RPM. Modifications were made to four stock propellers by cutting a notch perpendicular to the leading edge of the propeller at the 0.75 r/R and 0.87 r/R locations. The notches were of different depths and widths. Of the modifications, three of the configurations did not noticeably decrease the sound. However; the final configuration reduced the peak near field SPL to 111 dBA, a 6% reduction in dBA over the stock configuration corresponding to a greater than 50% reduction in sound generation. Smoke visualization confirms that a notch located at 0.87 r/R effectively disrupts the tip vortex formation, causing the tip vortices to dissipate much earlier than the stock propeller without the notch. Examining the noise frequency spectrums associated with both the stock and the modified propeller also confirm that the notch changes the magnitude and frequency distribution of the sound being generated.\",\"PeriodicalId\":114672,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-75973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从大型商业运输机到小型无人机系统(UASs),电力推进正在被广泛考虑用于各种机身。这些电力系统,特别是小型固定翼无人机和四轴飞行器,如果要在城市/人口稠密的环境中运行或用于情报、监视和侦察(ISR)场景,则需要既高效又安静。研制了一种螺旋桨试验装置,用于记录无人机螺旋桨后近场的螺旋桨性能和声音产生情况。通过表征声衰减随距离的变化,研究了近场噪声和远场噪声的定义问题。定义近场和远场噪声是一个在文献中没有很好地解决的问题。远场噪声一般遵循1/r衰减率,而近场则不然。在螺旋桨后面还有其他流场的相互作用也改变了衰减率,这项研究说明了这一点。本文提供的数据显示了测量无人机螺旋桨周围声音的困难,并开始解决这个问题。作者先前的无人机螺旋桨设计工作导致螺旋桨在近场更安静,同时效率更高。他们的研究表明,转速和叶尖涡的形成都对螺旋桨的声音产生有重要贡献。干扰叶顶涡的形成可以降低噪声的产生。目前的工作扩展了这些初步发现,并检查了大疆幻影2平台上的stock四轴飞行器螺旋桨产生的噪音。在旋转平面尾部一英寸处,这个9.4 × 5.0的螺旋桨在正常静态运行下的峰值声压级(SPL)约为118 dBA,在大约5900 RPM的转速下产生0.7 lbf的推力。通过在0.75 r/ r和0.87 r/ r位置切割垂直于螺旋桨前缘的缺口,对四个原螺旋桨进行了修改。这些缺口的深度和宽度各不相同。在这些修改中,有三种配置并没有明显地降低声音。然而;最终配置将峰值近场声压级降低到111 dBA,与原始配置相比,降低了6%的dBA,对应的声音产生减少了50%以上。烟雾可视化证实,位于0.87 r/ r的缺口有效地破坏了叶顶涡的形成,导致叶顶涡比没有缺口的原螺旋桨消散得更早。检查与原螺旋桨和改装螺旋桨相关的噪声频谱也证实,缺口改变了所产生声音的大小和频率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near and Far Field Noise Decay From a Quadcopter Propeller With and Without a Leading Edge Notch
Electric propulsion is being considered for a wide range of airframes from large commercial transports to the small Unmanned Aerial Systems (UASs). These electric systems, especially for small fixed wing UASs and quadcopters, need to be both efficient and quiet if they are to operate in an urban/populated environment or used in an Intelligence, Surveillance, and Reconnaissance (ISR) scenario. A propeller test facility was developed to record propeller performance and sound generation in the near field behind UAS propellers. The question of defining near and far field noise was studied by characterizing sound decay with distance from a UAS propeller. Defining near and far field noise is a subject that is not addressed well in the literature. Far field noise generally follows the 1/r decay rate and near field does not. Behind the propeller there are other flow field interactions that also change the decay rate, which this study illustrates. The data presented in this paper shows the difficulty in measuring sound around a UAS propeller and begins to resolve this topic. Previous UAS propeller design work by the authors resulted in propellers that were quieter in the near field and at the same time more efficient. Their studies showed RPM and tip vortex formation both contribute significantly to propeller sound generation. Disrupting the tip vortex formation should decrease the noise being generated. The current work extends these initial findings and examines the noise generation of a stock quadcopter propeller from a DJI Phantom 2 platform. One inch aft of the plane of rotation, this propeller, a 9.4 × 5.0, has a peak sound pressure level (SPL) of approximately 118 dBA under normal static operation producing 0.7 lbf of thrust at approximately 5900 RPM. Modifications were made to four stock propellers by cutting a notch perpendicular to the leading edge of the propeller at the 0.75 r/R and 0.87 r/R locations. The notches were of different depths and widths. Of the modifications, three of the configurations did not noticeably decrease the sound. However; the final configuration reduced the peak near field SPL to 111 dBA, a 6% reduction in dBA over the stock configuration corresponding to a greater than 50% reduction in sound generation. Smoke visualization confirms that a notch located at 0.87 r/R effectively disrupts the tip vortex formation, causing the tip vortices to dissipate much earlier than the stock propeller without the notch. Examining the noise frequency spectrums associated with both the stock and the modified propeller also confirm that the notch changes the magnitude and frequency distribution of the sound being generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Investigation on Bearing Chamber Wall Heat Transfer Effect of Aft Rotor on Forward Rotor Blade Wakes in Open Rotor Propulsion Systems Thermodynamic Analysis on Optimum Pressure Ratio Split of Intercooled Recuperated Turbofan Engines On the Efficacy of Integrating Structural Struts With Lobed Mixers in Turbofan Engine Exhaust Systems Thermodynamic Performance Enhancement of Marine Gas Turbine by Using Detonation Combustion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1