基于支持向量回归和分类的多视图人脸检测与识别

Yongmin Li, S. Gong, H. Liddell
{"title":"基于支持向量回归和分类的多视图人脸检测与识别","authors":"Yongmin Li, S. Gong, H. Liddell","doi":"10.1109/AFGR.2000.840650","DOIUrl":null,"url":null,"abstract":"A support vector machine-based multi-view face detection and recognition framework is described. Face detection is carried out by constructing several detectors, each of them in charge of one specific view. The symmetrical property of face images is employed to simplify the complexity of the modelling. The estimation of head pose, which is achieved by using the support vector regression technique, provides crucial information for choosing the appropriate face detector. This helps to improve the accuracy and reduce the computation in multi-view face detection compared to other methods. For video sequences, further computational reduction can be achieved by using a pose change smoothing strategy. When face detectors find a face in frontal view, a support vector machine-based multi-class classifier is activated for face recognition. All the above issues are integrated under a support vector machine framework. Test results on four video sequences are presented, among them the detection rate is above 95%, recognition accuracy is above 90%, average pose estimation error is around 10/spl deg/, and the full detection and recognition speed is up to 4 frames/second on a Pentium II 300 PC.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"276","resultStr":"{\"title\":\"Support vector regression and classification based multi-view face detection and recognition\",\"authors\":\"Yongmin Li, S. Gong, H. Liddell\",\"doi\":\"10.1109/AFGR.2000.840650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A support vector machine-based multi-view face detection and recognition framework is described. Face detection is carried out by constructing several detectors, each of them in charge of one specific view. The symmetrical property of face images is employed to simplify the complexity of the modelling. The estimation of head pose, which is achieved by using the support vector regression technique, provides crucial information for choosing the appropriate face detector. This helps to improve the accuracy and reduce the computation in multi-view face detection compared to other methods. For video sequences, further computational reduction can be achieved by using a pose change smoothing strategy. When face detectors find a face in frontal view, a support vector machine-based multi-class classifier is activated for face recognition. All the above issues are integrated under a support vector machine framework. Test results on four video sequences are presented, among them the detection rate is above 95%, recognition accuracy is above 90%, average pose estimation error is around 10/spl deg/, and the full detection and recognition speed is up to 4 frames/second on a Pentium II 300 PC.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"276\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 276

摘要

提出了一种基于支持向量机的多视图人脸检测与识别框架。人脸检测是通过构建多个检测器来实现的,每个检测器负责一个特定的视图。利用人脸图像的对称性,简化了建模的复杂性。利用支持向量回归技术实现头部姿态的估计,为选择合适的人脸检测器提供了重要信息。与其他方法相比,这有助于提高多视图人脸检测的精度和减少计算量。对于视频序列,可以通过使用姿态变化平滑策略进一步减少计算量。当人脸检测器在正面视图中发现人脸时,激活基于支持向量机的多类分类器进行人脸识别。将上述问题集成在支持向量机框架下。给出了在4个视频序列上的测试结果,其中检测率在95%以上,识别精度在90%以上,平均姿态估计误差在10/spl°/左右,在Pentium II 300 PC上的全部检测和识别速度可达4帧/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support vector regression and classification based multi-view face detection and recognition
A support vector machine-based multi-view face detection and recognition framework is described. Face detection is carried out by constructing several detectors, each of them in charge of one specific view. The symmetrical property of face images is employed to simplify the complexity of the modelling. The estimation of head pose, which is achieved by using the support vector regression technique, provides crucial information for choosing the appropriate face detector. This helps to improve the accuracy and reduce the computation in multi-view face detection compared to other methods. For video sequences, further computational reduction can be achieved by using a pose change smoothing strategy. When face detectors find a face in frontal view, a support vector machine-based multi-class classifier is activated for face recognition. All the above issues are integrated under a support vector machine framework. Test results on four video sequences are presented, among them the detection rate is above 95%, recognition accuracy is above 90%, average pose estimation error is around 10/spl deg/, and the full detection and recognition speed is up to 4 frames/second on a Pentium II 300 PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis Facial tracking and animation using a 3D sensor Automatic handwriting gestures recognition using hidden Markov models Real-time stereo tracking for head pose and gaze estimation Real-time detection of nodding and head-shaking by directly detecting and tracking the "between-eyes"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1