基于非负矩阵和张量因子分解的临床微阵列基因表达数据分类

Yifeng Li, A. Ngom
{"title":"基于非负矩阵和张量因子分解的临床微阵列基因表达数据分类","authors":"Yifeng Li, A. Ngom","doi":"10.1109/BIBM.2010.5706606","DOIUrl":null,"url":null,"abstract":"Non-negative information can benefit the analysis of microarray data. This paper investigates the classification performance of non-negative matrix factorization (NMF) over gene-sample data. We also extends it to higher-order version for classification of clinical time-series data represented by tensor. Experiments show that NMF and the higher-order NMF can achieve at least comparable prediction performance.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data\",\"authors\":\"Yifeng Li, A. Ngom\",\"doi\":\"10.1109/BIBM.2010.5706606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-negative information can benefit the analysis of microarray data. This paper investigates the classification performance of non-negative matrix factorization (NMF) over gene-sample data. We also extends it to higher-order version for classification of clinical time-series data represented by tensor. Experiments show that NMF and the higher-order NMF can achieve at least comparable prediction performance.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

非负信息有利于微阵列数据的分析。研究了非负矩阵分解(NMF)对基因样本数据的分类性能。我们还将其扩展到高阶版本,用于临床时间序列数据的张量分类。实验表明,NMF与高阶NMF的预测性能至少相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data
Non-negative information can benefit the analysis of microarray data. This paper investigates the classification performance of non-negative matrix factorization (NMF) over gene-sample data. We also extends it to higher-order version for classification of clinical time-series data represented by tensor. Experiments show that NMF and the higher-order NMF can achieve at least comparable prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1