Diego F. P. De Souza, Hugo C. C. Carneiro, F. França, P. Lima
{"title":"剪刀WiSARD","authors":"Diego F. P. De Souza, Hugo C. C. Carneiro, F. França, P. Lima","doi":"10.1109/BRICS-CCI-CBIC.2013.38","DOIUrl":null,"url":null,"abstract":"This paper presents some strategies used for creating intelligent players of rock-paper-scissors using WiSARD weightless neural networks and results obtained therewith. These strategies included: (i) a new approach for encoding of the input data, (ii) three new training algorithms that allow the reclassification of the input patterns over time, (iii) a method for dealing with incomplete information in the input array, and (iv) a bluffing strategy. Experiments show that, in a tournament of intelligent agents, WiSARD-based agents were ranked among the 200 best players, one of them achieving 9th place for about three weeks.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Rock-Paper-Scissors WiSARD\",\"authors\":\"Diego F. P. De Souza, Hugo C. C. Carneiro, F. França, P. Lima\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some strategies used for creating intelligent players of rock-paper-scissors using WiSARD weightless neural networks and results obtained therewith. These strategies included: (i) a new approach for encoding of the input data, (ii) three new training algorithms that allow the reclassification of the input patterns over time, (iii) a method for dealing with incomplete information in the input array, and (iv) a bluffing strategy. Experiments show that, in a tournament of intelligent agents, WiSARD-based agents were ranked among the 200 best players, one of them achieving 9th place for about three weeks.\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents some strategies used for creating intelligent players of rock-paper-scissors using WiSARD weightless neural networks and results obtained therewith. These strategies included: (i) a new approach for encoding of the input data, (ii) three new training algorithms that allow the reclassification of the input patterns over time, (iii) a method for dealing with incomplete information in the input array, and (iv) a bluffing strategy. Experiments show that, in a tournament of intelligent agents, WiSARD-based agents were ranked among the 200 best players, one of them achieving 9th place for about three weeks.