基于多智能体强化学习的无人机协同空战机动对抗

Zihao Gong, Yang Xu, D. Luo
{"title":"基于多智能体强化学习的无人机协同空战机动对抗","authors":"Zihao Gong, Yang Xu, D. Luo","doi":"10.1142/s2301385023410029","DOIUrl":null,"url":null,"abstract":"Focusing on the problem of multi-UAV cooperative air combat decision-making, a multi-UAV cooperative maneuvering decision-making approach is proposed based on multi-agent deep reinforcement learning (MARL) theory. First, the multi-UAV cooperative short-range air combat environment is established. Then, by combining the value-decomposition networks (VDNs) deep reinforcement learning theory with the embedded expert collaborative air combat experience reward function, an air combat cooperative strategy framework is proposed based on the networked decentralized partially observable Markov decision process (NDec-POMDP). The air combat maneuvering strategy is then optimized to improve the cooperative degree between UAVs in cooperative combat scenarios. Finally, multi-UAV cooperative air combat simulations are carried out and the results show the feasibility and effectiveness of the proposed cooperative air combat decision-making framework and method.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UAV Cooperative Air Combat Maneuvering Confrontation Based on Multi-agent Reinforcement Learning\",\"authors\":\"Zihao Gong, Yang Xu, D. Luo\",\"doi\":\"10.1142/s2301385023410029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on the problem of multi-UAV cooperative air combat decision-making, a multi-UAV cooperative maneuvering decision-making approach is proposed based on multi-agent deep reinforcement learning (MARL) theory. First, the multi-UAV cooperative short-range air combat environment is established. Then, by combining the value-decomposition networks (VDNs) deep reinforcement learning theory with the embedded expert collaborative air combat experience reward function, an air combat cooperative strategy framework is proposed based on the networked decentralized partially observable Markov decision process (NDec-POMDP). The air combat maneuvering strategy is then optimized to improve the cooperative degree between UAVs in cooperative combat scenarios. Finally, multi-UAV cooperative air combat simulations are carried out and the results show the feasibility and effectiveness of the proposed cooperative air combat decision-making framework and method.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2301385023410029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385023410029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对多无人机协同空战决策问题,提出了一种基于多智能体深度强化学习(MARL)理论的多无人机协同机动决策方法。首先,建立多无人机协同近程空战环境。然后,将价值分解网络(VDNs)深度强化学习理论与嵌入式专家协同空战经验奖励函数相结合,提出了一种基于网络化分散部分可观察马尔可夫决策过程(NDec-POMDP)的空战协同战略框架。优化了无人机的空战机动策略,提高了协同作战场景下无人机间的协同度。最后,进行了多无人机协同空战仿真,结果表明了所提出的协同空战决策框架和方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV Cooperative Air Combat Maneuvering Confrontation Based on Multi-agent Reinforcement Learning
Focusing on the problem of multi-UAV cooperative air combat decision-making, a multi-UAV cooperative maneuvering decision-making approach is proposed based on multi-agent deep reinforcement learning (MARL) theory. First, the multi-UAV cooperative short-range air combat environment is established. Then, by combining the value-decomposition networks (VDNs) deep reinforcement learning theory with the embedded expert collaborative air combat experience reward function, an air combat cooperative strategy framework is proposed based on the networked decentralized partially observable Markov decision process (NDec-POMDP). The air combat maneuvering strategy is then optimized to improve the cooperative degree between UAVs in cooperative combat scenarios. Finally, multi-UAV cooperative air combat simulations are carried out and the results show the feasibility and effectiveness of the proposed cooperative air combat decision-making framework and method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1