热边界层对周期性波动的响应

J. Saavedra, G. Paniagua, O. Chazot
{"title":"热边界层对周期性波动的响应","authors":"J. Saavedra, G. Paniagua, O. Chazot","doi":"10.1115/GT2018-76896","DOIUrl":null,"url":null,"abstract":"Unsteady effects impact the aerothermal performance of the turbine blade rows, originating noise, mechanical and thermal fatigue. Blade row interactions are due to the relative motion between nearby rows of airfoils, the periodic occurrence of flow distortions generated by the airfoil rows or combustors. The detailed characterization of the thermal boundary layer under periodic fluctuations is vital to improve the performance of cooled turbine airfoils. In the present contribution, we performed series of Unsteady Reynolds Averaged Navier-Stokes simulations to investigate the wall heat flux response to periodic flow velocity fluctuations, on a flat plate of 0.5 m. We investigated the boundary layer response to sudden flow acceleration and periodic flow perturbations, caused by inlet total pressure variations. Because of the flow acceleration the boundary layer is first stretched, resulting in an increase of the wall shear stress. Later on, due to the viscous diffusion, the low momentum flow adjusts to the new free stream conditions. The behavior of the boundary layer at low frequency is similar to the response to an individual deceleration followed by one acceleration. However, at higher frequencies the mean flow topology is completely altered. One would expect that higher acceleration rates would cause a further stretching of the boundary layer that should cause even greater wall shear stresses and heat fluxes. However, we observed the opposite; instead, the amplitude of the skin friction coefficient is abated, while the peak level is one order of magnitude smaller than at low frequency. Two counteracting effects influence the response of both the momentum and the thermal boundary layer. In one hand, the stagnant flow quantities propagate at characteristic velocities guiding the establishment of the mean flow conditions. On the other hand, the diffusion across the boundary layer leads the final response of the near wall region. However, the dynamic pressure gradients imposed in the mean flow modulate the viscous properties of the boundary layer through local flow acceleration, transforming the expected pattern.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Boundary Layer Response to Periodic Fluctuations\",\"authors\":\"J. Saavedra, G. Paniagua, O. Chazot\",\"doi\":\"10.1115/GT2018-76896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsteady effects impact the aerothermal performance of the turbine blade rows, originating noise, mechanical and thermal fatigue. Blade row interactions are due to the relative motion between nearby rows of airfoils, the periodic occurrence of flow distortions generated by the airfoil rows or combustors. The detailed characterization of the thermal boundary layer under periodic fluctuations is vital to improve the performance of cooled turbine airfoils. In the present contribution, we performed series of Unsteady Reynolds Averaged Navier-Stokes simulations to investigate the wall heat flux response to periodic flow velocity fluctuations, on a flat plate of 0.5 m. We investigated the boundary layer response to sudden flow acceleration and periodic flow perturbations, caused by inlet total pressure variations. Because of the flow acceleration the boundary layer is first stretched, resulting in an increase of the wall shear stress. Later on, due to the viscous diffusion, the low momentum flow adjusts to the new free stream conditions. The behavior of the boundary layer at low frequency is similar to the response to an individual deceleration followed by one acceleration. However, at higher frequencies the mean flow topology is completely altered. One would expect that higher acceleration rates would cause a further stretching of the boundary layer that should cause even greater wall shear stresses and heat fluxes. However, we observed the opposite; instead, the amplitude of the skin friction coefficient is abated, while the peak level is one order of magnitude smaller than at low frequency. Two counteracting effects influence the response of both the momentum and the thermal boundary layer. In one hand, the stagnant flow quantities propagate at characteristic velocities guiding the establishment of the mean flow conditions. On the other hand, the diffusion across the boundary layer leads the final response of the near wall region. However, the dynamic pressure gradients imposed in the mean flow modulate the viscous properties of the boundary layer through local flow acceleration, transforming the expected pattern.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"10 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非定常效应影响涡轮叶片排的气动热性能、源噪声、机械疲劳和热疲劳。叶片排相互作用是由于附近的排翼型之间的相对运动,流动畸变的周期性发生产生的翼型排或燃烧室。周期性波动下热边界层的详细表征对于提高冷却涡轮翼型的性能至关重要。在本文中,我们进行了一系列非定常Reynolds平均Navier-Stokes模拟,以研究在0.5 m的平板上,壁面热流密度对周期性流速波动的响应。研究了边界层对进口总压变化引起的突然流动加速和周期性流动扰动的响应。由于流动加速,边界层首先被拉伸,导致壁面剪应力增大。随后,由于粘性扩散,低动量流调整到新的自由流条件。边界层在低频时的行为类似于对单个减速后再进行一次加速的响应。然而,在更高的频率下,平均流动拓扑结构完全改变。人们预计,更高的加速度会导致边界层进一步拉伸,从而导致更大的壁面剪切应力和热通量。然而,我们观察到相反的情况;相反,表面摩擦系数的振幅减弱,而峰值水平比低频时小一个数量级。两个相互抵消的效应同时影响动量和热边界层的响应。一方面,滞流量以特征速度传播,指导平均流动条件的建立。另一方面,边界层的扩散导致了近壁区的最终响应。然而,在平均流动中施加的动压力梯度通过局部流动加速调节了边界层的粘性特性,改变了预期的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Boundary Layer Response to Periodic Fluctuations
Unsteady effects impact the aerothermal performance of the turbine blade rows, originating noise, mechanical and thermal fatigue. Blade row interactions are due to the relative motion between nearby rows of airfoils, the periodic occurrence of flow distortions generated by the airfoil rows or combustors. The detailed characterization of the thermal boundary layer under periodic fluctuations is vital to improve the performance of cooled turbine airfoils. In the present contribution, we performed series of Unsteady Reynolds Averaged Navier-Stokes simulations to investigate the wall heat flux response to periodic flow velocity fluctuations, on a flat plate of 0.5 m. We investigated the boundary layer response to sudden flow acceleration and periodic flow perturbations, caused by inlet total pressure variations. Because of the flow acceleration the boundary layer is first stretched, resulting in an increase of the wall shear stress. Later on, due to the viscous diffusion, the low momentum flow adjusts to the new free stream conditions. The behavior of the boundary layer at low frequency is similar to the response to an individual deceleration followed by one acceleration. However, at higher frequencies the mean flow topology is completely altered. One would expect that higher acceleration rates would cause a further stretching of the boundary layer that should cause even greater wall shear stresses and heat fluxes. However, we observed the opposite; instead, the amplitude of the skin friction coefficient is abated, while the peak level is one order of magnitude smaller than at low frequency. Two counteracting effects influence the response of both the momentum and the thermal boundary layer. In one hand, the stagnant flow quantities propagate at characteristic velocities guiding the establishment of the mean flow conditions. On the other hand, the diffusion across the boundary layer leads the final response of the near wall region. However, the dynamic pressure gradients imposed in the mean flow modulate the viscous properties of the boundary layer through local flow acceleration, transforming the expected pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Film Cooling Performance of the Compound Hole and Y-Shaped Hole Configurations With the Cross-Flow Coolant Channel Aerodynamic and Heat Transfer Experimental Investigation of Platform Cooling on a HP Nozzle Vane Cascade Studies on Cooling Performance of Round Cooling Holes With Various Configurations on a High-Pressure Turbine Vane A Review of Impingement Jet Cooling in Combustor Liner Active Turbulence Generation for Film Cooling Investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1