Yun-Fan Chang, Payton Lin, Shao-Hua Cheng, Kai-Hsuan Chan, Y. Zeng, Chia-Wei Liao, Wen-Tsung Chang, Y. Wang, Yu Tsao
{"title":"基于i向量和DNN混合系统的音频流鲁棒主播检测","authors":"Yun-Fan Chang, Payton Lin, Shao-Hua Cheng, Kai-Hsuan Chan, Y. Zeng, Chia-Wei Liao, Wen-Tsung Chang, Y. Wang, Yu Tsao","doi":"10.1109/APSIPA.2014.7041717","DOIUrl":null,"url":null,"abstract":"Anchorperson segment detection enables efficient video content indexing for information retrieval. Anchorperson detection based on audio analysis has gained popularity due to lower computational complexity and satisfactory performance. This paper presents a robust framework using a hybrid I-vector and deep neural network (DNN) system to perform anchorperson detection based on audio streams of video content. The proposed system first applies I-vector to extract speaker identity features from the audio data. With the extracted speaker identity features, a DNN classifier is then used to verify the claimed anchorperson identity. In addition, subspace feature normalization (SFN) is incorporated into the hybrid system for robust feature extraction to compensate the audio mismatch issues caused by recording devices. An anchorperson verification experiment was conducted to evaluate the equal error rate (EER) of the proposed hybrid system. Experimental results demonstrate that the proposed system outperforms the state-of-the-art hybrid I-vector and support vector machine (SVM) system. Moreover, the proposed system was further enhanced by integrating SFN to effectively compensate the audio mismatch issues in anchorperson detection tasks.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"62 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust anchorperson detection based on audio streams using a hybrid I-vector and DNN system\",\"authors\":\"Yun-Fan Chang, Payton Lin, Shao-Hua Cheng, Kai-Hsuan Chan, Y. Zeng, Chia-Wei Liao, Wen-Tsung Chang, Y. Wang, Yu Tsao\",\"doi\":\"10.1109/APSIPA.2014.7041717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anchorperson segment detection enables efficient video content indexing for information retrieval. Anchorperson detection based on audio analysis has gained popularity due to lower computational complexity and satisfactory performance. This paper presents a robust framework using a hybrid I-vector and deep neural network (DNN) system to perform anchorperson detection based on audio streams of video content. The proposed system first applies I-vector to extract speaker identity features from the audio data. With the extracted speaker identity features, a DNN classifier is then used to verify the claimed anchorperson identity. In addition, subspace feature normalization (SFN) is incorporated into the hybrid system for robust feature extraction to compensate the audio mismatch issues caused by recording devices. An anchorperson verification experiment was conducted to evaluate the equal error rate (EER) of the proposed hybrid system. Experimental results demonstrate that the proposed system outperforms the state-of-the-art hybrid I-vector and support vector machine (SVM) system. Moreover, the proposed system was further enhanced by integrating SFN to effectively compensate the audio mismatch issues in anchorperson detection tasks.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":\"62 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust anchorperson detection based on audio streams using a hybrid I-vector and DNN system
Anchorperson segment detection enables efficient video content indexing for information retrieval. Anchorperson detection based on audio analysis has gained popularity due to lower computational complexity and satisfactory performance. This paper presents a robust framework using a hybrid I-vector and deep neural network (DNN) system to perform anchorperson detection based on audio streams of video content. The proposed system first applies I-vector to extract speaker identity features from the audio data. With the extracted speaker identity features, a DNN classifier is then used to verify the claimed anchorperson identity. In addition, subspace feature normalization (SFN) is incorporated into the hybrid system for robust feature extraction to compensate the audio mismatch issues caused by recording devices. An anchorperson verification experiment was conducted to evaluate the equal error rate (EER) of the proposed hybrid system. Experimental results demonstrate that the proposed system outperforms the state-of-the-art hybrid I-vector and support vector machine (SVM) system. Moreover, the proposed system was further enhanced by integrating SFN to effectively compensate the audio mismatch issues in anchorperson detection tasks.