用于中文法律问题分类的多任务 CNN

Guangyi Xiao, Jiqian Mo, Even Chow, Hao Chen, J. Guo, Zhiguo Gong
{"title":"用于中文法律问题分类的多任务 CNN","authors":"Guangyi Xiao, Jiqian Mo, Even Chow, Hao Chen, J. Guo, Zhiguo Gong","doi":"10.1109/ICEBE.2017.22","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-task learning algorithm to classify the Chinese legal questions using deep convolutional neural networks (CNN). First, we propose a multi-task Convolutional Neural Network (CNN) for classification of Chinese legal questions with trainable word embedding where coarse grained classification is the main task and fine grained classification is the side task. Second, we develop a hierarchical classification model which takes the output of coarse classification as one part of the input for fine grained classification. We find that the side task can improve the accuracy and efficiency of the classification in a certain extent. Our experiments on the entire Chinese Legal Questions Dataset (LQDS) demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using almost all data in LQDS for classification and we achieve the state of the art performance.","PeriodicalId":347774,"journal":{"name":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-Task CNN for Classification of Chinese Legal Questions\",\"authors\":\"Guangyi Xiao, Jiqian Mo, Even Chow, Hao Chen, J. Guo, Zhiguo Gong\",\"doi\":\"10.1109/ICEBE.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-task learning algorithm to classify the Chinese legal questions using deep convolutional neural networks (CNN). First, we propose a multi-task Convolutional Neural Network (CNN) for classification of Chinese legal questions with trainable word embedding where coarse grained classification is the main task and fine grained classification is the side task. Second, we develop a hierarchical classification model which takes the output of coarse classification as one part of the input for fine grained classification. We find that the side task can improve the accuracy and efficiency of the classification in a certain extent. Our experiments on the entire Chinese Legal Questions Dataset (LQDS) demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using almost all data in LQDS for classification and we achieve the state of the art performance.\",\"PeriodicalId\":347774,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEBE.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用深度卷积神经网络(CNN)对中文法律问题进行分类的多任务学习算法。首先,我们提出了一种多任务卷积神经网络(CNN),用于对中文法律问题进行可训练的词嵌入分类,其中粗粒度分类是主要任务,细粒度分类是次要任务。其次,我们开发了一个分层分类模型,将粗粒度分类的输出作为细粒度分类输入的一部分。我们发现,副任务可以在一定程度上提高分类的准确性和效率。我们在整个中文法律问题数据集(LQDS)上的实验证明了所提方法的有效性。据我们所知,这是第一项使用 LQDS 中几乎所有数据进行分类的工作,而且我们取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Task CNN for Classification of Chinese Legal Questions
This paper proposes a multi-task learning algorithm to classify the Chinese legal questions using deep convolutional neural networks (CNN). First, we propose a multi-task Convolutional Neural Network (CNN) for classification of Chinese legal questions with trainable word embedding where coarse grained classification is the main task and fine grained classification is the side task. Second, we develop a hierarchical classification model which takes the output of coarse classification as one part of the input for fine grained classification. We find that the side task can improve the accuracy and efficiency of the classification in a certain extent. Our experiments on the entire Chinese Legal Questions Dataset (LQDS) demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using almost all data in LQDS for classification and we achieve the state of the art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Integrated System Optimization Based on the Boiler Combustion and Denitration with Denitration Operating Cost Consideration Chinese Questions Classification in the Law Domain Dust Removal with Boundary and Spatial Constraint for Videos Captured in Car Indexing for Large Scale Data Querying Based on Spark SQL Finding K-Most Influential Users in Social Networks for Information Diffusion Based on Network Structure and Different User Behavioral Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1