{"title":"多代理系统的LQR性能:引入延迟代理间度量的好处","authors":"A. Seuret, P. Menon, C. Edwards","doi":"10.1109/CDC.2013.6760698","DOIUrl":null,"url":null,"abstract":"This paper deals with the design of an optimal controller for a set of identical multi-agent systems. The problem under consideration is to examine if there is any benefit to adding to the classical local optimal control law, obtained from solving a Riccati equation, a term which depends on delayed relative information with respect to neighbouring agents. The resulting control law has a local linear feedback term (from solving the Riccati equation) and a consensus-like term which depends on a delayed version of the relative states with respect to its neighbours. The resulting closed loop system at a network level is linear and involves delayed states. A Lyapunov-Krasovskii approach is used to synthesize the gain associated with the consensus term to provide sub-optimal LQR-like performance at a network level. Situations are demonstrated when this approach provides better performance (in terms of the LQR cost) than when a traditional decentralised approach is adopted.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"119 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"LQR performance for multi-agent systems: Benefits of introducing delayed inter-agent measurements\",\"authors\":\"A. Seuret, P. Menon, C. Edwards\",\"doi\":\"10.1109/CDC.2013.6760698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the design of an optimal controller for a set of identical multi-agent systems. The problem under consideration is to examine if there is any benefit to adding to the classical local optimal control law, obtained from solving a Riccati equation, a term which depends on delayed relative information with respect to neighbouring agents. The resulting control law has a local linear feedback term (from solving the Riccati equation) and a consensus-like term which depends on a delayed version of the relative states with respect to its neighbours. The resulting closed loop system at a network level is linear and involves delayed states. A Lyapunov-Krasovskii approach is used to synthesize the gain associated with the consensus term to provide sub-optimal LQR-like performance at a network level. Situations are demonstrated when this approach provides better performance (in terms of the LQR cost) than when a traditional decentralised approach is adopted.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"119 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LQR performance for multi-agent systems: Benefits of introducing delayed inter-agent measurements
This paper deals with the design of an optimal controller for a set of identical multi-agent systems. The problem under consideration is to examine if there is any benefit to adding to the classical local optimal control law, obtained from solving a Riccati equation, a term which depends on delayed relative information with respect to neighbouring agents. The resulting control law has a local linear feedback term (from solving the Riccati equation) and a consensus-like term which depends on a delayed version of the relative states with respect to its neighbours. The resulting closed loop system at a network level is linear and involves delayed states. A Lyapunov-Krasovskii approach is used to synthesize the gain associated with the consensus term to provide sub-optimal LQR-like performance at a network level. Situations are demonstrated when this approach provides better performance (in terms of the LQR cost) than when a traditional decentralised approach is adopted.