SPINN:核网络中的怀疑预测

Ian A. Andrews, Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian
{"title":"SPINN:核网络中的怀疑预测","authors":"Ian A. Andrews, Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian","doi":"10.1109/ISI.2015.7165933","DOIUrl":null,"url":null,"abstract":"The best known analyses to date of nuclear proliferation networks are qualitative analyses of networks consisting of just hundreds of nodes and edges. We propose SPINN - a computational framework that performs the following tasks. Starting from existing lists of sanctioned entities, SPINN automatically builds a highly augmented network by scraping connections between individuals, companies, and government organizations from sources like LinkedIN and public company data from Bloomberg. By analyzing this open source information alone, we have built up a network of over 74K nodes and 1.09M edges, containing a smaller whitelist and a blacklist. We develop numerous “features” of nodes in such networks that take both intrinsic node properties and network properties into account, and based on these, we develop methods to classify previously unclassified nodes as suspicious or unsuspicious. On 10-fold cross validation on ground truth data, we obtain a Matthews Correlation Coefficient for our best classifier of just over 0.9. We show that of the 10 most relevant features for distinguishing between suspicious and non-suspicious nodes, the top 8 are network related measures including a novel notion of suspicion rank.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SPINN: Suspicion prediction in nuclear networks\",\"authors\":\"Ian A. Andrews, Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian\",\"doi\":\"10.1109/ISI.2015.7165933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best known analyses to date of nuclear proliferation networks are qualitative analyses of networks consisting of just hundreds of nodes and edges. We propose SPINN - a computational framework that performs the following tasks. Starting from existing lists of sanctioned entities, SPINN automatically builds a highly augmented network by scraping connections between individuals, companies, and government organizations from sources like LinkedIN and public company data from Bloomberg. By analyzing this open source information alone, we have built up a network of over 74K nodes and 1.09M edges, containing a smaller whitelist and a blacklist. We develop numerous “features” of nodes in such networks that take both intrinsic node properties and network properties into account, and based on these, we develop methods to classify previously unclassified nodes as suspicious or unsuspicious. On 10-fold cross validation on ground truth data, we obtain a Matthews Correlation Coefficient for our best classifier of just over 0.9. We show that of the 10 most relevant features for distinguishing between suspicious and non-suspicious nodes, the top 8 are network related measures including a novel notion of suspicion rank.\",\"PeriodicalId\":292352,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2015.7165933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

迄今为止,对核扩散网络最著名的分析是对仅由数百个节点和边缘组成的网络进行定性分析。我们提出SPINN——一个执行以下任务的计算框架。SPINN从现有的制裁实体名单开始,通过从LinkedIN等来源和彭博社的上市公司数据中收集个人、公司和政府组织之间的联系,自动构建一个高度增强的网络。通过单独分析这些开源信息,我们已经建立了一个超过74K个节点和109万条边的网络,其中包含一个较小的白名单和一个黑名单。我们开发了这种网络中节点的许多“特征”,这些特征考虑了节点的内在属性和网络属性,并在此基础上开发了将先前未分类的节点分类为可疑或不可疑的方法。在地面真实数据的10倍交叉验证中,我们获得了我们最好的分类器的马修斯相关系数刚刚超过0.9。我们表明,在区分可疑和非可疑节点的10个最相关特征中,前8个是与网络相关的度量,包括怀疑等级的新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPINN: Suspicion prediction in nuclear networks
The best known analyses to date of nuclear proliferation networks are qualitative analyses of networks consisting of just hundreds of nodes and edges. We propose SPINN - a computational framework that performs the following tasks. Starting from existing lists of sanctioned entities, SPINN automatically builds a highly augmented network by scraping connections between individuals, companies, and government organizations from sources like LinkedIN and public company data from Bloomberg. By analyzing this open source information alone, we have built up a network of over 74K nodes and 1.09M edges, containing a smaller whitelist and a blacklist. We develop numerous “features” of nodes in such networks that take both intrinsic node properties and network properties into account, and based on these, we develop methods to classify previously unclassified nodes as suspicious or unsuspicious. On 10-fold cross validation on ground truth data, we obtain a Matthews Correlation Coefficient for our best classifier of just over 0.9. We show that of the 10 most relevant features for distinguishing between suspicious and non-suspicious nodes, the top 8 are network related measures including a novel notion of suspicion rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1