基于自适应平行坐标的眼动追踪

Mohammad Chegini, K. Andrews, T. Schreck, A. Sourin
{"title":"基于自适应平行坐标的眼动追踪","authors":"Mohammad Chegini, K. Andrews, T. Schreck, A. Sourin","doi":"10.1145/3355056.3364563","DOIUrl":null,"url":null,"abstract":"Parallel coordinates is a well-known technique for visual analysis of high-dimensional data. Although it is effective for interactive discovery of patterns in subsets of dimensions and data records, it also has scalability issues for large datasets. In particular, the amount of visual information potentially being shown in a parallel coordinates plot grows combinatorially with the number of dimensions. Choosing the right ordering of axes is crucial, and poor design can lead to visual noise and a cluttered plot. In this case, the user may overlook a significant pattern, or leave some dimensions unexplored. In this work, we demonstrate how eye-tracking can help an analyst efficiently and effectively reorder the axes in a parallel coordinates plot. Implicit input from an inexpensive eye-tracker assists the system in finding unexplored dimensions. Using this information, the system guides the user either visually or automatically to find further appropriate orderings of the axes.","PeriodicalId":101958,"journal":{"name":"SIGGRAPH Asia 2019 Posters","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eye-Tracking Based Adaptive Parallel Coordinates\",\"authors\":\"Mohammad Chegini, K. Andrews, T. Schreck, A. Sourin\",\"doi\":\"10.1145/3355056.3364563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel coordinates is a well-known technique for visual analysis of high-dimensional data. Although it is effective for interactive discovery of patterns in subsets of dimensions and data records, it also has scalability issues for large datasets. In particular, the amount of visual information potentially being shown in a parallel coordinates plot grows combinatorially with the number of dimensions. Choosing the right ordering of axes is crucial, and poor design can lead to visual noise and a cluttered plot. In this case, the user may overlook a significant pattern, or leave some dimensions unexplored. In this work, we demonstrate how eye-tracking can help an analyst efficiently and effectively reorder the axes in a parallel coordinates plot. Implicit input from an inexpensive eye-tracker assists the system in finding unexplored dimensions. Using this information, the system guides the user either visually or automatically to find further appropriate orderings of the axes.\",\"PeriodicalId\":101958,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Posters\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355056.3364563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355056.3364563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

平行坐标是一种著名的高维数据可视化分析技术。尽管它对于在维度子集和数据记录中交互式发现模式是有效的,但是对于大型数据集,它也存在可伸缩性问题。特别是,在平行坐标图中潜在显示的视觉信息的数量随着维数的增加而组合增长。选择正确的轴的顺序是至关重要的,糟糕的设计会导致视觉噪音和混乱的情节。在这种情况下,用户可能会忽略一个重要的模式,或者留下一些未探索的维度。在这项工作中,我们展示了眼动追踪如何帮助分析师有效地重新排列平行坐标图中的轴。来自廉价眼动仪的隐式输入帮助系统发现未探索的维度。利用这些信息,系统引导用户以视觉或自动方式找到进一步适当的轴的顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eye-Tracking Based Adaptive Parallel Coordinates
Parallel coordinates is a well-known technique for visual analysis of high-dimensional data. Although it is effective for interactive discovery of patterns in subsets of dimensions and data records, it also has scalability issues for large datasets. In particular, the amount of visual information potentially being shown in a parallel coordinates plot grows combinatorially with the number of dimensions. Choosing the right ordering of axes is crucial, and poor design can lead to visual noise and a cluttered plot. In this case, the user may overlook a significant pattern, or leave some dimensions unexplored. In this work, we demonstrate how eye-tracking can help an analyst efficiently and effectively reorder the axes in a parallel coordinates plot. Implicit input from an inexpensive eye-tracker assists the system in finding unexplored dimensions. Using this information, the system guides the user either visually or automatically to find further appropriate orderings of the axes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method to Make 3DCG Movement to Anime-Style Using Animation Technique Virtual Immersive Educational Systems: Early Results and Lessons Learned HaptoBOX: Fast, memory efficient and resolution independent rendering of cubic Bézier curves using tessellation shaders Pop-up digital tabletop: seamless integration of 2D and 3D visualizations in a tabletop environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1