基于长短期姿态预测网络的乒乓球实时预测系统

Erwin Wu, Florian Perteneder, H. Koike
{"title":"基于长短期姿态预测网络的乒乓球实时预测系统","authors":"Erwin Wu, Florian Perteneder, H. Koike","doi":"10.1145/3355056.3364555","DOIUrl":null,"url":null,"abstract":"Humans’ ability to forecast motions and trajectories, are one of the most important abilities in many sports. With the development of deep learning and computer vision, it is becoming possible to do the same thing with real-time computing. In this paper, we present a real-time table tennis forecasting system using a long short-term pose prediction network. Our system can predict the trajectory of a serve before the pingpong ball is even hit based on the previous and present motions of a player, which is captured only using a single RGB camera. The system can be either used for training beginner’s prediction skill, or used for practitioners to train a conceal serve.","PeriodicalId":101958,"journal":{"name":"SIGGRAPH Asia 2019 Posters","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-time Table Tennis Forecasting System based on Long Short-term Pose Prediction Network\",\"authors\":\"Erwin Wu, Florian Perteneder, H. Koike\",\"doi\":\"10.1145/3355056.3364555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans’ ability to forecast motions and trajectories, are one of the most important abilities in many sports. With the development of deep learning and computer vision, it is becoming possible to do the same thing with real-time computing. In this paper, we present a real-time table tennis forecasting system using a long short-term pose prediction network. Our system can predict the trajectory of a serve before the pingpong ball is even hit based on the previous and present motions of a player, which is captured only using a single RGB camera. The system can be either used for training beginner’s prediction skill, or used for practitioners to train a conceal serve.\",\"PeriodicalId\":101958,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Posters\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355056.3364555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355056.3364555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人类预测运动和轨迹的能力是许多运动中最重要的能力之一。随着深度学习和计算机视觉的发展,在实时计算中做同样的事情成为可能。本文提出了一种基于长短期姿态预测网络的乒乓球实时预测系统。我们的系统甚至可以根据运动员之前和现在的动作,在乒乓球被击中之前预测发球的轨迹,这只需要一个RGB相机就可以捕捉到。该系统既可用于训练初学者的预测技巧,也可用于训练练习者的隐蔽发球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Table Tennis Forecasting System based on Long Short-term Pose Prediction Network
Humans’ ability to forecast motions and trajectories, are one of the most important abilities in many sports. With the development of deep learning and computer vision, it is becoming possible to do the same thing with real-time computing. In this paper, we present a real-time table tennis forecasting system using a long short-term pose prediction network. Our system can predict the trajectory of a serve before the pingpong ball is even hit based on the previous and present motions of a player, which is captured only using a single RGB camera. The system can be either used for training beginner’s prediction skill, or used for practitioners to train a conceal serve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method to Make 3DCG Movement to Anime-Style Using Animation Technique Virtual Immersive Educational Systems: Early Results and Lessons Learned HaptoBOX: Fast, memory efficient and resolution independent rendering of cubic Bézier curves using tessellation shaders Pop-up digital tabletop: seamless integration of 2D and 3D visualizations in a tabletop environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1