基于深度学习机的太阳能电站长短期记忆短期发电预测

Thao Nguyen Da, Li Yimin, Chi Peng, M. Cho, Khanh Nguyen Le Kim, Phuong Nguyen Thanh
{"title":"基于深度学习机的太阳能电站长短期记忆短期发电预测","authors":"Thao Nguyen Da, Li Yimin, Chi Peng, M. Cho, Khanh Nguyen Le Kim, Phuong Nguyen Thanh","doi":"10.1109/GTSD54989.2022.9989035","DOIUrl":null,"url":null,"abstract":"Solar power is a clean energy source that has developed quickly with considerable attention. Solar energy is required more accurate predictions, which could be integrated into the power grid. Therefore, this project attempts to improve short-term solar power prediction's accuracy, utilizing the long short-term memory (LSTM) in a deep learning machine. The collected data is acquired from the solar system installed in Kaohsiung city, Taiwan. The historical sequential weather parameter and the collected data from the battery module are utilized as input features for the predicting model. To acquire the optimum performance, hyperparameter optimization is employed to construct the best sequential historical data of the LSTM model. The experiment results are compared with a recurrent neural network (RNN), indicating that the LSTM could predict short-term solar power better.","PeriodicalId":125445,"journal":{"name":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term Solar Power Prediction using Long Short-Term Memory in Solar Plant with Deep Learning Machine\",\"authors\":\"Thao Nguyen Da, Li Yimin, Chi Peng, M. Cho, Khanh Nguyen Le Kim, Phuong Nguyen Thanh\",\"doi\":\"10.1109/GTSD54989.2022.9989035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar power is a clean energy source that has developed quickly with considerable attention. Solar energy is required more accurate predictions, which could be integrated into the power grid. Therefore, this project attempts to improve short-term solar power prediction's accuracy, utilizing the long short-term memory (LSTM) in a deep learning machine. The collected data is acquired from the solar system installed in Kaohsiung city, Taiwan. The historical sequential weather parameter and the collected data from the battery module are utilized as input features for the predicting model. To acquire the optimum performance, hyperparameter optimization is employed to construct the best sequential historical data of the LSTM model. The experiment results are compared with a recurrent neural network (RNN), indicating that the LSTM could predict short-term solar power better.\",\"PeriodicalId\":125445,\"journal\":{\"name\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GTSD54989.2022.9989035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD54989.2022.9989035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能是一种发展迅速、备受关注的清洁能源。太阳能需要更准确的预测,这可以整合到电网中。因此,本项目试图利用深度学习机器中的长短期记忆(LSTM)来提高短期太阳能预测的准确性。收集的数据来自安装在台湾高雄市的太阳能系统。利用历史时序天气参数和从电池模块采集的数据作为预测模型的输入特征。为了获得最优的性能,采用超参数优化方法构造LSTM模型的最佳序列历史数据。实验结果与递归神经网络(RNN)进行了比较,表明LSTM能较好地预测短期太阳能功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-term Solar Power Prediction using Long Short-Term Memory in Solar Plant with Deep Learning Machine
Solar power is a clean energy source that has developed quickly with considerable attention. Solar energy is required more accurate predictions, which could be integrated into the power grid. Therefore, this project attempts to improve short-term solar power prediction's accuracy, utilizing the long short-term memory (LSTM) in a deep learning machine. The collected data is acquired from the solar system installed in Kaohsiung city, Taiwan. The historical sequential weather parameter and the collected data from the battery module are utilized as input features for the predicting model. To acquire the optimum performance, hyperparameter optimization is employed to construct the best sequential historical data of the LSTM model. The experiment results are compared with a recurrent neural network (RNN), indicating that the LSTM could predict short-term solar power better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design a Fuel Battery Operation Model for a Car Application for Training Key Information Extraction from Mobile-Captured Vietnamese Receipt Images using Graph Neural Networks Approach Indoor Mobile Robot Positioning using Sensor Fusion A Steering Strategy for Self-Driving Automobile Systems Based on Lane-Line Detection The Improved Sliding Mode Observer for Sensorless Speed Control of Permanent Magnet Synchronous Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1