基于滑动窗口UKF的LSSVR在线多步超前时间序列预测

Xiaoyong Liu, H. Fang
{"title":"基于滑动窗口UKF的LSSVR在线多步超前时间序列预测","authors":"Xiaoyong Liu, H. Fang","doi":"10.1109/CCDC.2015.7162646","DOIUrl":null,"url":null,"abstract":"Accurate multi-step-ahead prediction over long future horizons posts great challenges for the application of time series prediction. A novel online multi-step-ahead prediction method based on least squares support vector regression (LSSVR) is proposed in this paper. Taken the superiorities of using sliding-windows to reduce largely computation burden and implementing LSSVR model updating by Unscented Kalman Filter (UKF) into consideration, the proposed method not only can construct online predicted model in much fewer training data (such as the size of original training data set required is only the sum of embedding dimension corresponding to phase-space-reconstruction and the length of sliding-windows), but also has the better accuracy over multi-step-ahead prediction. When the prediction horizon reached the predefined step p in the process of predicting, model parameters consisted of kernel width σ, support values {αk}k=1L and bias term b are updated by new arrived measurements and UKF. Finally, several simulations are provided to show the validity and applicability of the proposed method.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online multi-step-ahead time series prediction based on LSSVR using UKF with sliding-windows\",\"authors\":\"Xiaoyong Liu, H. Fang\",\"doi\":\"10.1109/CCDC.2015.7162646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate multi-step-ahead prediction over long future horizons posts great challenges for the application of time series prediction. A novel online multi-step-ahead prediction method based on least squares support vector regression (LSSVR) is proposed in this paper. Taken the superiorities of using sliding-windows to reduce largely computation burden and implementing LSSVR model updating by Unscented Kalman Filter (UKF) into consideration, the proposed method not only can construct online predicted model in much fewer training data (such as the size of original training data set required is only the sum of embedding dimension corresponding to phase-space-reconstruction and the length of sliding-windows), but also has the better accuracy over multi-step-ahead prediction. When the prediction horizon reached the predefined step p in the process of predicting, model parameters consisted of kernel width σ, support values {αk}k=1L and bias term b are updated by new arrived measurements and UKF. Finally, several simulations are provided to show the validity and applicability of the proposed method.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7162646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准确的多步超前预测对时间序列预测的应用提出了很大的挑战。提出了一种基于最小二乘支持向量回归(LSSVR)的在线多步预测方法。考虑到滑动窗口大大减少计算量和使用Unscented卡尔曼滤波(UKF)实现LSSVR模型更新的优点,该方法不仅可以在更少的训练数据(如所需原始训练数据集的大小仅为相空间重构对应的嵌入维数与滑动窗口长度之和)下构建在线预测模型;而且比多步超前预测精度更高。在预测过程中,当预测水平到达预定步长p时,由核宽度σ、支持值{αk}k=1L和偏差项b组成的模型参数由新到达的测量值和UKF更新。最后,通过仿真验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online multi-step-ahead time series prediction based on LSSVR using UKF with sliding-windows
Accurate multi-step-ahead prediction over long future horizons posts great challenges for the application of time series prediction. A novel online multi-step-ahead prediction method based on least squares support vector regression (LSSVR) is proposed in this paper. Taken the superiorities of using sliding-windows to reduce largely computation burden and implementing LSSVR model updating by Unscented Kalman Filter (UKF) into consideration, the proposed method not only can construct online predicted model in much fewer training data (such as the size of original training data set required is only the sum of embedding dimension corresponding to phase-space-reconstruction and the length of sliding-windows), but also has the better accuracy over multi-step-ahead prediction. When the prediction horizon reached the predefined step p in the process of predicting, model parameters consisted of kernel width σ, support values {αk}k=1L and bias term b are updated by new arrived measurements and UKF. Finally, several simulations are provided to show the validity and applicability of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application and design of attack and defense algorithms in WTN chess of computer games Research on calculating method of hidden layer nodes in BP network An improved GAFSA with adaptive step chaotic search The research on flywheel acceleration assessment with null motion escaping singularity for variable speed control moment gyros A multiple sub-models self-tuning control algorithm of non-uniformly sampled systems based on auxiliary-variable-model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1