基于小波和支持向量机的焊缝图像分类系统

V. Kalaiselvi, D. Aravindhar
{"title":"基于小波和支持向量机的焊缝图像分类系统","authors":"V. Kalaiselvi, D. Aravindhar","doi":"10.1109/ICCCT2.2019.8824884","DOIUrl":null,"url":null,"abstract":"A weld defect is a flaw occurs during the weldment. These defects are unavoidable during welding process. In this paper, an efficient weld image classification system for the classification of weld images into defect or no defect is presented. It uses GD X-ray weld image database for the evaluation. Discrete Wavelet Transform (DWT) is applied to GD X-ray weld images to obtain the wavelet coefficients of low and high frequencies. Then, energy and entropy features are computed. Support Vector Machine (SVM) classifier with different kernels is used for classification of flaw images into defect or no defect. Result show that DWT and SVM classifier provides 95% accuracy for weld image classification.","PeriodicalId":445544,"journal":{"name":"2019 3rd International Conference on Computing and Communications Technologies (ICCCT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Weld Image Classification System Using Wavelet And Support Vector Machine\",\"authors\":\"V. Kalaiselvi, D. Aravindhar\",\"doi\":\"10.1109/ICCCT2.2019.8824884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weld defect is a flaw occurs during the weldment. These defects are unavoidable during welding process. In this paper, an efficient weld image classification system for the classification of weld images into defect or no defect is presented. It uses GD X-ray weld image database for the evaluation. Discrete Wavelet Transform (DWT) is applied to GD X-ray weld images to obtain the wavelet coefficients of low and high frequencies. Then, energy and entropy features are computed. Support Vector Machine (SVM) classifier with different kernels is used for classification of flaw images into defect or no defect. Result show that DWT and SVM classifier provides 95% accuracy for weld image classification.\",\"PeriodicalId\":445544,\"journal\":{\"name\":\"2019 3rd International Conference on Computing and Communications Technologies (ICCCT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Computing and Communications Technologies (ICCCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2019.8824884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2019.8824884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

焊接缺陷是在焊接过程中出现的缺陷。这些缺陷在焊接过程中是不可避免的。本文提出了一种有效的焊缝图像分类系统,将焊缝图像分为缺陷和无缺陷两类。采用GD x射线焊缝图像数据库进行评价。将离散小波变换(DWT)应用于GD x射线焊缝图像,得到低、高频小波系数。然后,计算能量和熵特征。采用不同核的支持向量机分类器对缺陷图像进行缺陷和无缺陷的分类。结果表明,DWT和SVM分类器对焊缝图像的分类准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Weld Image Classification System Using Wavelet And Support Vector Machine
A weld defect is a flaw occurs during the weldment. These defects are unavoidable during welding process. In this paper, an efficient weld image classification system for the classification of weld images into defect or no defect is presented. It uses GD X-ray weld image database for the evaluation. Discrete Wavelet Transform (DWT) is applied to GD X-ray weld images to obtain the wavelet coefficients of low and high frequencies. Then, energy and entropy features are computed. Support Vector Machine (SVM) classifier with different kernels is used for classification of flaw images into defect or no defect. Result show that DWT and SVM classifier provides 95% accuracy for weld image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainability and Fog Computing: Applications, Advantages and Challenges Human Gait Recognition using Deep Convolutional Neural Network A Systematic analysis of Data-intensive MOOCs and their key Challenges Forensic Based Cloud Computing Architecture – Exploration and Implementation SPICE Modelling of CNTFET based Neuron Architecture for Low Power and High Speed applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1