基于小波分解和ANFIS网络的移动机器人电池电量跟踪与预测新方法

Hui Liu, N. Stoll, S. Junginger, K. Thurow
{"title":"基于小波分解和ANFIS网络的移动机器人电池电量跟踪与预测新方法","authors":"Hui Liu, N. Stoll, S. Junginger, K. Thurow","doi":"10.1109/ROBIO.2014.7090339","DOIUrl":null,"url":null,"abstract":"An intelligent system named Laboratory Mobile Robot Transportation System (LMRTS) has been developed for the mobile robotic transportation in laboratory automation. In this paper, a new approach is presented to predict and manage the on-board battery voltages of the mobile robots for optimizing the LMRTS system. The LMRTS can select and optimize the best mobile robotic candidate for a transportation task by considering those battery forecasting results. The proposed predictor includes three components: (a) Measuring the online voltages of the robotic on-board batteries; (b) Using the wavelet method to decompose the original measured data into a series of sub-layers; (c) Building the ANFIS for all the decomposed sub-layers and make the predictions; and (d) Integrating the forecasting results of the sub-layers to have the final predictions for the original online voltage signal. Two real experimental results show that the proposed hybrid predictor has both high forecasting accuracy and fast time performance, which can provide a powerful assistance to the real mobile robotic transportation.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new approach to battery power tracking and predicting for mobile robot transportation using wavelet decomposition and ANFIS networks\",\"authors\":\"Hui Liu, N. Stoll, S. Junginger, K. Thurow\",\"doi\":\"10.1109/ROBIO.2014.7090339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intelligent system named Laboratory Mobile Robot Transportation System (LMRTS) has been developed for the mobile robotic transportation in laboratory automation. In this paper, a new approach is presented to predict and manage the on-board battery voltages of the mobile robots for optimizing the LMRTS system. The LMRTS can select and optimize the best mobile robotic candidate for a transportation task by considering those battery forecasting results. The proposed predictor includes three components: (a) Measuring the online voltages of the robotic on-board batteries; (b) Using the wavelet method to decompose the original measured data into a series of sub-layers; (c) Building the ANFIS for all the decomposed sub-layers and make the predictions; and (d) Integrating the forecasting results of the sub-layers to have the final predictions for the original online voltage signal. Two real experimental results show that the proposed hybrid predictor has both high forecasting accuracy and fast time performance, which can provide a powerful assistance to the real mobile robotic transportation.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2014.7090339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对实验室自动化中的移动机器人运输问题,研制了实验室移动机器人运输智能系统LMRTS。本文提出了一种预测和管理移动机器人车载电池电压的新方法,以优化LMRTS系统。LMRTS可以通过考虑这些电池预测结果来选择和优化运输任务的最佳移动机器人候选者。所提出的预测器包括三个部分:(a)测量机器人车载电池的在线电压;(b)利用小波变换方法将原始测量数据分解成一系列子层;(c)为所有分解的子层建立ANFIS并进行预测;(d)综合各子层的预测结果,得到对原始在线电压信号的最终预测。两个实际实验结果表明,所提出的混合预测器具有较高的预测精度和较快的时间性能,可为实际移动机器人运输提供有力的辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach to battery power tracking and predicting for mobile robot transportation using wavelet decomposition and ANFIS networks
An intelligent system named Laboratory Mobile Robot Transportation System (LMRTS) has been developed for the mobile robotic transportation in laboratory automation. In this paper, a new approach is presented to predict and manage the on-board battery voltages of the mobile robots for optimizing the LMRTS system. The LMRTS can select and optimize the best mobile robotic candidate for a transportation task by considering those battery forecasting results. The proposed predictor includes three components: (a) Measuring the online voltages of the robotic on-board batteries; (b) Using the wavelet method to decompose the original measured data into a series of sub-layers; (c) Building the ANFIS for all the decomposed sub-layers and make the predictions; and (d) Integrating the forecasting results of the sub-layers to have the final predictions for the original online voltage signal. Two real experimental results show that the proposed hybrid predictor has both high forecasting accuracy and fast time performance, which can provide a powerful assistance to the real mobile robotic transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Velocity field control with energy compensation toward therapeutic exercise A control-oriented model of underwater snake robots Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex Novelty detection in user behavioural models within ambient assisted living applications: An experimental evaluation Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1