基于fcmdd的关系数据鲁棒c均值线性聚类

Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi
{"title":"基于fcmdd的关系数据鲁棒c均值线性聚类","authors":"Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi","doi":"10.1109/ICMLA.2011.164","DOIUrl":null,"url":null,"abstract":"Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust FCMdd-based Linear Clustering for Relational Data with Alternative c-Means Criterion\",\"authors\":\"Takeshi Yamamoto, Katsuhiro Honda, A. Notsu, H. Ichihashi\",\"doi\":\"10.1109/ICMLA.2011.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关系聚类在数据挖掘中得到了积极的研究,它将固有的数据结构归纳为聚类结构。提出了一种基于模糊c-介质的线性模糊聚类模型,用于从关系数据中提取固有的局部线性子结构。备选模糊c均值(AFCM)是模糊c均值的扩展,它基于鲁棒m估计的概念,使用一种改进的距离度量来代替传统的欧几里得距离。本文对基于fcmdd的线性聚类模型进行了进一步的修正,利用带权函数的伪m估计过程对修正后的AFCM中距离度量进行了修正,以便从包括离群值在内的关系数据中提取线性子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust FCMdd-based Linear Clustering for Relational Data with Alternative c-Means Criterion
Relational clustering is actively studied in data mining, in which intrinsic data structure is summarized into cluster structure. A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) is proposed for extracting intrinsic local linear substructures from relational data. Alternative Fuzzy c- Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance measure instead of the conventional Euclidean distance is used based on the robust M-estimation concept. In this paper, the FCMdd-based linear clustering model is further modified in order to extract linear substructure from relational data including outliers, using a pseudo-M-estimation procedure with a weight function for the modified distance measure in AFCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1