超越可见光谱的基于特征的人检测

K. Jüngling, Michael Arens
{"title":"超越可见光谱的基于特征的人检测","authors":"K. Jüngling, Michael Arens","doi":"10.1109/CVPRW.2009.5204085","DOIUrl":null,"url":null,"abstract":"One of the main challenges in computer vision is the automatic detection of specific object classes in images. Recent advances of object detection performance in the visible spectrum encourage the application of these approaches to data beyond the visible spectrum. In this paper, we show the applicability of a well known, local-feature based object detector for the case of people detection in thermal data. We adapt the detector to the special conditions of infrared data and show the specifics relevant for feature based object detection. For that, we employ the SURF feature detector and descriptor that is well suited for infrared data. We evaluate the performance of our adapted object detector in the task of person detection in different real-world scenarios where people occur at multiple scales. Finally, we show how this local-feature based detector can be used to recognize specific object parts, i.e., body parts of detected people.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Feature based person detection beyond the visible spectrum\",\"authors\":\"K. Jüngling, Michael Arens\",\"doi\":\"10.1109/CVPRW.2009.5204085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in computer vision is the automatic detection of specific object classes in images. Recent advances of object detection performance in the visible spectrum encourage the application of these approaches to data beyond the visible spectrum. In this paper, we show the applicability of a well known, local-feature based object detector for the case of people detection in thermal data. We adapt the detector to the special conditions of infrared data and show the specifics relevant for feature based object detection. For that, we employ the SURF feature detector and descriptor that is well suited for infrared data. We evaluate the performance of our adapted object detector in the task of person detection in different real-world scenarios where people occur at multiple scales. Finally, we show how this local-feature based detector can be used to recognize specific object parts, i.e., body parts of detected people.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

计算机视觉的主要挑战之一是图像中特定对象类别的自动检测。可见光谱中目标检测性能的最新进展鼓励了这些方法在可见光谱以外数据中的应用。在本文中,我们展示了一种众所周知的基于局部特征的目标检测器在热数据中检测人的情况下的适用性。我们使探测器适应红外数据的特殊条件,并显示了基于特征的目标检测的相关细节。为此,我们采用了非常适合红外数据的SURF特征检测器和描述符。我们在不同的现实世界场景中评估了我们的适应对象检测器在人检测任务中的性能,其中人出现在多个尺度上。最后,我们展示了如何使用这种基于局部特征的检测器来识别特定的物体部分,即被检测人的身体部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature based person detection beyond the visible spectrum
One of the main challenges in computer vision is the automatic detection of specific object classes in images. Recent advances of object detection performance in the visible spectrum encourage the application of these approaches to data beyond the visible spectrum. In this paper, we show the applicability of a well known, local-feature based object detector for the case of people detection in thermal data. We adapt the detector to the special conditions of infrared data and show the specifics relevant for feature based object detection. For that, we employ the SURF feature detector and descriptor that is well suited for infrared data. We evaluate the performance of our adapted object detector in the task of person detection in different real-world scenarios where people occur at multiple scales. Finally, we show how this local-feature based detector can be used to recognize specific object parts, i.e., body parts of detected people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1