减少晶圆场内工艺(印刷)缺陷的可能性,用于逻辑和DRAM应用

Yael Sufrin, Avi Cohen, Ofir Sharoni, R. Seltmann
{"title":"减少晶圆场内工艺(印刷)缺陷的可能性,用于逻辑和DRAM应用","authors":"Yael Sufrin, Avi Cohen, Ofir Sharoni, R. Seltmann","doi":"10.1117/12.2535686","DOIUrl":null,"url":null,"abstract":"Wafer Intra-Field Process (Printing) Defects created due to various process segments. Narrow Lithography process window (Litho PW), effected by Dose & Focus (calibrated by FEM – Focus Exposure Matrix), is one of the major contributors for the wafer intra-filed process defects caused by hot spots. The Litho PW can be expanded by controlling the Dose parameters over the wafer intra-field. Dose parameters effect the Critical Dimension Uniformity (CDU). Controlling the wafer intra-field CDU will expand the Litho PW and will reduce the process (printing) defects. The extension of 193nm based lithography usage combined with design shrinkage rules for process control (in particular the wafer level CDU control), are extremely important and challenging task in IC manufacturing. This work will show the ZEISS CDC application (CD Control) and its significant positive effect on the intra-field CDU, Litho PW, and process defects probability, as well as introduction for wafer FAB integration flow. It will also challenge some existing process parameters specifications and will explain why IC manufacturing failures come real although all individual process parameters in spec. Specification limits for each individual parameter do not necessarily guarantee a successful process, as it’s almost impossible to anticipate and verify all possible interdependencies among different parameters. The goal is therefore, to show how to improve IC process by shrinking its individual parameters distributions, even if the variability of those parameters is in specification. This work will offer solution named as “Excursion Prevention” - Improve wafer intra-field CDU by using the ZEISS CDC tool, to reduce the wafer intra-field printing defects caused by narrow Litho PW.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduce probability of wafer intra-field process (printing) defects for logic and DRAM applications\",\"authors\":\"Yael Sufrin, Avi Cohen, Ofir Sharoni, R. Seltmann\",\"doi\":\"10.1117/12.2535686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wafer Intra-Field Process (Printing) Defects created due to various process segments. Narrow Lithography process window (Litho PW), effected by Dose & Focus (calibrated by FEM – Focus Exposure Matrix), is one of the major contributors for the wafer intra-filed process defects caused by hot spots. The Litho PW can be expanded by controlling the Dose parameters over the wafer intra-field. Dose parameters effect the Critical Dimension Uniformity (CDU). Controlling the wafer intra-field CDU will expand the Litho PW and will reduce the process (printing) defects. The extension of 193nm based lithography usage combined with design shrinkage rules for process control (in particular the wafer level CDU control), are extremely important and challenging task in IC manufacturing. This work will show the ZEISS CDC application (CD Control) and its significant positive effect on the intra-field CDU, Litho PW, and process defects probability, as well as introduction for wafer FAB integration flow. It will also challenge some existing process parameters specifications and will explain why IC manufacturing failures come real although all individual process parameters in spec. Specification limits for each individual parameter do not necessarily guarantee a successful process, as it’s almost impossible to anticipate and verify all possible interdependencies among different parameters. The goal is therefore, to show how to improve IC process by shrinking its individual parameters distributions, even if the variability of those parameters is in specification. This work will offer solution named as “Excursion Prevention” - Improve wafer intra-field CDU by using the ZEISS CDC tool, to reduce the wafer intra-field printing defects caused by narrow Litho PW.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2535686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

晶圆场内工艺(印刷)由于不同工艺环节造成的缺陷。窄光刻工艺窗口(Litho PW)受剂量和焦点(由FEM -焦点曝光矩阵校准)的影响,是引起晶圆场内工艺缺陷的主要原因之一。Litho PW可以通过控制晶圆内场的剂量参数来扩展。剂量参数影响临界尺寸均匀性。控制晶圆场内CDU将扩大光刻PW,并将减少工艺(印刷)缺陷。在集成电路制造中,扩展193nm光刻技术的使用,结合工艺控制(特别是晶圆级CDU控制)的设计收缩规则,是极其重要和具有挑战性的任务。本工作将展示蔡司CDC应用(CD Control)及其对场内CDU,光刻PW和工艺缺陷概率的显著积极影响,以及对晶圆FAB集成流程的介绍。它还将挑战一些现有的工艺参数规范,并将解释为什么尽管规格中有所有单独的工艺参数,但IC制造失败却会成为现实。每个单独参数的规格限制并不一定保证成功的工艺,因为几乎不可能预测和验证不同参数之间所有可能的相互依赖性。因此,目标是展示如何通过缩小其单个参数分布来改进集成电路工艺,即使这些参数的可变性是在规范中。这项工作将提供名为“偏移预防”的解决方案-利用蔡司CDC工具改善晶圆场内CDU,以减少由于狭窄的光刻PW而导致的晶圆场内印刷缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduce probability of wafer intra-field process (printing) defects for logic and DRAM applications
Wafer Intra-Field Process (Printing) Defects created due to various process segments. Narrow Lithography process window (Litho PW), effected by Dose & Focus (calibrated by FEM – Focus Exposure Matrix), is one of the major contributors for the wafer intra-filed process defects caused by hot spots. The Litho PW can be expanded by controlling the Dose parameters over the wafer intra-field. Dose parameters effect the Critical Dimension Uniformity (CDU). Controlling the wafer intra-field CDU will expand the Litho PW and will reduce the process (printing) defects. The extension of 193nm based lithography usage combined with design shrinkage rules for process control (in particular the wafer level CDU control), are extremely important and challenging task in IC manufacturing. This work will show the ZEISS CDC application (CD Control) and its significant positive effect on the intra-field CDU, Litho PW, and process defects probability, as well as introduction for wafer FAB integration flow. It will also challenge some existing process parameters specifications and will explain why IC manufacturing failures come real although all individual process parameters in spec. Specification limits for each individual parameter do not necessarily guarantee a successful process, as it’s almost impossible to anticipate and verify all possible interdependencies among different parameters. The goal is therefore, to show how to improve IC process by shrinking its individual parameters distributions, even if the variability of those parameters is in specification. This work will offer solution named as “Excursion Prevention” - Improve wafer intra-field CDU by using the ZEISS CDC tool, to reduce the wafer intra-field printing defects caused by narrow Litho PW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergy between quantum computing and semiconductor technology New registration calibration strategies for MBMW tools by PROVE measurements OPC flow for non-conventional layouts: specific application to optical diffusers Lithographic performance of resist ma-N 1402 in an e-beam/i-line stepper intra-level mix and match approach High-precision optical constant characterization of materials in the EUV spectral range: from large research facilities to laboratory-based instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1