TCP、PEP和DTN在破坏性卫星信道上的性能

C. Caini, P. Cornice, R. Firrincieli, M. Livini, D. Lacamera
{"title":"TCP、PEP和DTN在破坏性卫星信道上的性能","authors":"C. Caini, P. Cornice, R. Firrincieli, M. Livini, D. Lacamera","doi":"10.1109/IWSSC.2009.5286336","DOIUrl":null,"url":null,"abstract":"Fixed GEO satellite communications are impaired by long RTTs and the possible presence of packet losses on the satellite radio channel. Moreover, when the satellite receiver is mobile, short and long disruptions due to line of sight obstructions can cause further performance deterioration. In this paper, we present a preliminary assessment of disruption impact on performance comparing different approaches, such as end-to-end TCP, PEP based on TCP splitting and DTN. Performance is evaluated on a Linux testbed, by emulating the satellite link interruptions caused by tunnels on a real railway line. Results show that good performance can be achieved by all of the approaches considered provided that on the satellite channel an efficient TCP variant, like Hybla, is adopted; however, DTN offers best performance. DTN superiority emerges when the disrupted satellite channel is the last leg of a congested path, thanks to the DTN custody transfer mechanism and store and forward capability.","PeriodicalId":137431,"journal":{"name":"2009 International Workshop on Satellite and Space Communications","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"TCP, PEP and DTN performance on disruptive satellite channels\",\"authors\":\"C. Caini, P. Cornice, R. Firrincieli, M. Livini, D. Lacamera\",\"doi\":\"10.1109/IWSSC.2009.5286336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed GEO satellite communications are impaired by long RTTs and the possible presence of packet losses on the satellite radio channel. Moreover, when the satellite receiver is mobile, short and long disruptions due to line of sight obstructions can cause further performance deterioration. In this paper, we present a preliminary assessment of disruption impact on performance comparing different approaches, such as end-to-end TCP, PEP based on TCP splitting and DTN. Performance is evaluated on a Linux testbed, by emulating the satellite link interruptions caused by tunnels on a real railway line. Results show that good performance can be achieved by all of the approaches considered provided that on the satellite channel an efficient TCP variant, like Hybla, is adopted; however, DTN offers best performance. DTN superiority emerges when the disrupted satellite channel is the last leg of a congested path, thanks to the DTN custody transfer mechanism and store and forward capability.\",\"PeriodicalId\":137431,\"journal\":{\"name\":\"2009 International Workshop on Satellite and Space Communications\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Satellite and Space Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSC.2009.5286336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Satellite and Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSC.2009.5286336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

固定地球同步轨道卫星通信受到长时间rtt和卫星无线电信道上可能出现的包丢失的影响。此外,当卫星接收机处于移动状态时,由于视线障碍物造成的短时间和长时间干扰会导致性能进一步恶化。在本文中,我们对中断对性能的影响进行了初步评估,比较了不同的方法,如端到端TCP、基于TCP分裂的PEP和DTN。通过模拟真实铁路线上隧道引起的卫星链路中断,在Linux测试台上对性能进行了评估。结果表明,只要在卫星信道上采用一种高效的TCP变体,如Hybla,所考虑的所有方法都可以获得良好的性能;然而,DTN提供了最好的性能。由于DTN的监护传输机制和存储转发能力,当中断的卫星信道是拥挤路径的最后一段时,DTN的优势就显现出来了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCP, PEP and DTN performance on disruptive satellite channels
Fixed GEO satellite communications are impaired by long RTTs and the possible presence of packet losses on the satellite radio channel. Moreover, when the satellite receiver is mobile, short and long disruptions due to line of sight obstructions can cause further performance deterioration. In this paper, we present a preliminary assessment of disruption impact on performance comparing different approaches, such as end-to-end TCP, PEP based on TCP splitting and DTN. Performance is evaluated on a Linux testbed, by emulating the satellite link interruptions caused by tunnels on a real railway line. Results show that good performance can be achieved by all of the approaches considered provided that on the satellite channel an efficient TCP variant, like Hybla, is adopted; however, DTN offers best performance. DTN superiority emerges when the disrupted satellite channel is the last leg of a congested path, thanks to the DTN custody transfer mechanism and store and forward capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing the snow effects on hybrid network using optical Wireless and GHz links Integration of TESLA and FLUTE over satellite networks BSM integrated PEP with cross-layer improvements Regular session 4 (room E) transport and quality of service I Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes for deep space and high data rate applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1