{"title":"在大型音乐数据库中实现高效的自动歌手识别","authors":"Jialie Shen, B. Cui, J. Shepherd, K. Tan","doi":"10.1145/1148170.1148184","DOIUrl":null,"url":null,"abstract":"Automated singer identification is important in organising, browsing and retrieving data in large music databases. In this paper, we propose a novel scheme, called Hybrid Singer Identifier (HSI), for automated singer recognition. HSI can effectively use multiple low-level features extracted from both vocal and non-vocal music segments to enhance the identification process with a hybrid architecture and build profiles of individual singer characteristics based on statistical mixture models. Extensive experimental results conducted on a large music database demonstrate the superiority of our method over state-of-the-art approaches.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Towards efficient automated singer identification in large music databases\",\"authors\":\"Jialie Shen, B. Cui, J. Shepherd, K. Tan\",\"doi\":\"10.1145/1148170.1148184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated singer identification is important in organising, browsing and retrieving data in large music databases. In this paper, we propose a novel scheme, called Hybrid Singer Identifier (HSI), for automated singer recognition. HSI can effectively use multiple low-level features extracted from both vocal and non-vocal music segments to enhance the identification process with a hybrid architecture and build profiles of individual singer characteristics based on statistical mixture models. Extensive experimental results conducted on a large music database demonstrate the superiority of our method over state-of-the-art approaches.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards efficient automated singer identification in large music databases
Automated singer identification is important in organising, browsing and retrieving data in large music databases. In this paper, we propose a novel scheme, called Hybrid Singer Identifier (HSI), for automated singer recognition. HSI can effectively use multiple low-level features extracted from both vocal and non-vocal music segments to enhance the identification process with a hybrid architecture and build profiles of individual singer characteristics based on statistical mixture models. Extensive experimental results conducted on a large music database demonstrate the superiority of our method over state-of-the-art approaches.