基于颜色的目标识别主动基模型的监督学习

T. T. Q. Bui, K. Hong
{"title":"基于颜色的目标识别主动基模型的监督学习","authors":"T. T. Q. Bui, K. Hong","doi":"10.1109/KSE.2010.20","DOIUrl":null,"url":null,"abstract":"Wu and coworkers introduced an active basis model (ABM) for detecting generic objects in static images. A grey-value local power spectrum was utilized to find a common template and deformable templates from a set of training images and to detect an object in unknown images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short) which includes color information. We adapt the framework of Wu et al. into the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both supervised learning and template matching algorithms. In addition, significant improvements are reported with regard to the proposed color-based ABM for object recognition.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supervised Learning of a Color-Based Active Basis Model for Object Recognition\",\"authors\":\"T. T. Q. Bui, K. Hong\",\"doi\":\"10.1109/KSE.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wu and coworkers introduced an active basis model (ABM) for detecting generic objects in static images. A grey-value local power spectrum was utilized to find a common template and deformable templates from a set of training images and to detect an object in unknown images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short) which includes color information. We adapt the framework of Wu et al. into the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both supervised learning and template matching algorithms. In addition, significant improvements are reported with regard to the proposed color-based ABM for object recognition.\",\"PeriodicalId\":158823,\"journal\":{\"name\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Wu和同事引入了一种主动基模型(ABM)来检测静态图像中的一般物体。利用灰值局部功率谱从一组训练图像中找到通用模板和可变形模板,并通过模板匹配来检测未知图像中的目标。本文提出了一种包含颜色信息的基于颜色的活动基模型(简称基于颜色的ABM)。我们将Wu等人的框架应用到基于颜色的ABM的学习、检测和分类中。然而,为了提高目标识别的性能,我们修改了Wu等人的框架,在监督学习和模板匹配算法中使用不同的基于颜色的特征。此外,关于提出的基于颜色的ABM用于目标识别的重大改进也有报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supervised Learning of a Color-Based Active Basis Model for Object Recognition
Wu and coworkers introduced an active basis model (ABM) for detecting generic objects in static images. A grey-value local power spectrum was utilized to find a common template and deformable templates from a set of training images and to detect an object in unknown images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short) which includes color information. We adapt the framework of Wu et al. into the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both supervised learning and template matching algorithms. In addition, significant improvements are reported with regard to the proposed color-based ABM for object recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Effective Method for Ontology Integration by Propagating Inconsistency An Improvement of PIP for Time Series Dimensionality Reduction and Its Index Structure Smoothing Supervised Learning of Neural Networks for Function Approximation A Runtime Approach to Verify Scenario in Multi-agent Systems Supervised Feature Evaluation by Consistency Analysis: Application to Measure Sets Used to Characterise Geographic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1